Хлор его физические и химические свойства. Хлор очень сильный окислитель. Хлор: свойства, применение, получение

Хлор
Атомный номер 17
Внешний вид простого вещества Газ жёлто-зеленого цвета с резким запахом. Ядовит.
Свойства атома
Атомная масса
(молярная масса)
35,4527 а.е.м.(г/моль)
Радиус атома 100 пм
Энергия ионизации
(первый электрон)
1254.9(13.01)
кДж/моль (эВ)
Электронная конфигурация 3s 2 3p 5
Химические свойства
Ковалентный радиус 99 пм
Радиус иона (+7e)27 (-1e)181 пм
Электроотрицательность
(по Полингу)
3.16
Электродный потенциал 0
Степени окисления 7, 6, 5, 4, 3, 1, −1
Термодинамические свойства простого вещества
Плотность (при −33.6 °C)1,56
г/см³
Молярная теплоёмкость 21.838 Дж/(K·моль)
Теплопроводность 0.009 Вт /( ·K)
Температура плавления 172.2
Теплота плавления 6.41 кДж /моль
Температура кипения 238.6
Теплота испарения 20.41 кДж/моль
Молярный объём 18.7 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a=6,29 b=4,50 c=8,21 Å
Отношение c/a
Температура Дебая n/a K

Хлор (χλωρός — зелёный) — элемент главной подгруппы седьмой группы, третьего периода периодической системы химических элементов, с атомным номером 17.

Элемент ХЛОР обозначается символом Cl (лат. Chlorum ). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора [дословно «галоген» переводится как солерод], но оно не прижилось, и впоследствии стало общим для VII группы элементов, в которую входит и хлор).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях — ядовитый газ желтовато-зелёного цвета, с резким запахом. Молекула хлора двухатомная (формула Cl 2).

История открытия хлора

Схема атома хлора

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства.

Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту , то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия , однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор .

Распространение в природе

В природе встречаются два изотопа хлора 35 Cl и 37 Cl. В земной коре хлор самый распространённый галоген. Хлор очень активен — он непосредственно соединяется почти со всеми элементами периодической системы.

В природе он встречается только в виде соединений в составе минералов: галита NaCI, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 · 6H2O, карналлита KCl · MgCl 2 · 6Н 2 O, каинита KCl · MgSO 4 · 3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.

На долю хлора приходится 0,025 % от общего числа атомов земной коры, кларковое число хлора — 0,19%, а человеческий организм содержит 0,25 % ионов хлора по массе. В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

Изотопный состав

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22 %.

Изотоп Относительная масса, а.е.м. Период полураспада Тип распада Ядерный спин
35 Cl 34.968852721 Стабилен 3/2
36 Cl 35.9683069 301000 лет β-распад в 36 Ar 0
37 Cl 36.96590262 Стабилен 3/2
38 Cl 37.9680106 37,2 минуты β-распад в 38 Ar 2
39 Cl 38.968009 55,6 минуты β-распад в 39 Ar 3/2
40 Cl 39.97042 1,38 минуты β-распад в 40 Ar 2
41 Cl 40.9707 34 c β-распад в 41 Ar
42 Cl 41.9732 46,8 c β-распад в 42 Ar
43 Cl 42.9742 3,3 c β-распад в 43 Ar

Физические и физико-химические свойства

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

Свойство Значение
Температура кипения −34 °C
Температура плавления −101 °C
Температура разложения
(диссоциации на атомы)
~1400°С
Плотность (газ, н.у.) 3,214 г/л
Сродство к электрону атома 3,65 эВ
Первая энергия ионизации 12,97 эВ
Теплоемкость (298 К, газ) 34,94 (Дж/моль·K)
Критическая температура 144 °C
Критическое давление 76 атм
Стандартная энтальпия образования (298 К, газ) 0 (кДж/моль)
Стандартная энтропия образования (298 К, газ) 222,9 (Дж/моль·K)
Энтальпия плавления 6,406 (кДж/моль)
Энтальпия кипения 20,41 (кДж/моль)

При охлаждении хлор превращается в жидкость при температуре около 239 К, а затем ниже 113 К кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a=6,29 b=4,50 , c=8,21 . Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную , имеющую пространственную группу P4 2 /ncm и параметры решётки a=8,56 и c=6,12 .

Растворимость

Степень диссоциации молекулы хлора Cl 2 → 2Cl. При 1000 К равна 2,07*10 -4 %, а при 2500 К 0,909 %.

Порог восприятия запаха в воздухе равен 0,003 (мг/л).

В реестре CAS — номер 7782-50-5.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра. Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

Химические свойства

Строение электронной оболочки

На валентном уровне атома хлора содержится 1 неспаренный электрон: 1S² 2S² 2p 6 3S² 3p 5 , поэтому валентность равная 1 для атома хлора очень стабильна. За счёт присутствия в атоме хлора незанятой орбитали d-подуровня, атом хлора может проявлять и другие валентности. Схема образования возбуждённых состояний атома:

Также известны соединения хлора, в которых атом хлора формально проявляет валентность 4 и 6, например ClO 2 и Cl 2 O 6 . Однако, эти соединения являются радикалами , то есть у них есть один неспаренный электрон.

Взаимодействие с металлами

Хлор непосредственно реагирует почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании):

Cl 2 + 2Na → 2NaCl 3Cl 2 + 2Sb → 2SbCl 3 3Cl 2 + 2Fe → 2FeCl 3

Взаимодействие с неметаллами

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикальному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованием хлороводорода . Смесь хлора с водородом в небольших концентрациях горит бесцветным или желто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.:

Cl 2 + H 2 → 2HCl 5Cl 2 + 2P → 2PCl 5 2S + Cl 2 → S 2 Cl 2 Cl 2 + 3F 2 (изб.) → 2ClF 3

Другие свойства

Cl 2 + CO → COCl 2

При растворении в воде или щелочах, хлор дисмутирует , образуя хлорноватистую (а при нагревании хлорную) и соляную кислоты , либо их соли:

Cl 2 + H 2 O → HCl + HClO 3Cl 2 + 6NaOH → 5NaCl + NaClO 3 + 3H 2 O Cl 2 + Ca(OH) 2 → CaCl(OCl) + H 2 O 4NH 3 + 3Cl 2 → NCl 3 + 3NH 4 Cl

Окислительные свойства хлора

Cl 2 + H 2 S → 2HCl + S

Реакции с органическими веществами

CH 3 -CH 3 + Cl 2 → C 2 H 6-x Cl x + HCl

Присоединяется к ненасыщенным соединениям по кратным связям:

CH 2 =CH 2 + Cl 2 → Cl-CH 2 -CH 2 -Cl

Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl 3 или FeCl 3):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl

Способы получения

Промышленные методы

Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

MnO 2 + 4HCl → MnCl 2 + Cl 2 + 2H 2 O

В 1867 году Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха. Процесс Дикона в настоящее время используется при рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений.

4HCl + O 2 → 2H 2 O + 2Cl 2

Сегодня хлор в промышленных масштабах получают вместе с гидроксидом натрия и водородом путём электролиза раствора поваренной соли:

2NaCl + 2H 2 О → H 2 + Cl 2 + 2NaOH Анод: 2Cl - — 2е - → Cl 2 0 Катод: 2H 2 O + 2e - → H 2 + 2OH -

Так как параллельно электролизу хлорида натрия проходит процесс электролиз воды, то суммарное уравнение можно выразить следующим образом:

1,80 NaCl + 0,50 H 2 O → 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2

Применяется три варианта электрохимического метода получения хлора. Два из них электролиз с твердым катодом: диафрагменный и мембранный методы, третий — электролиз с жидким ртутным катодом (ртутный метод производства). В ряду электрохимических методов производства самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути.

Диафрагменный метод с твердым катодом

Полость электролизера разделена пористой асбестовой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом. В анодное пространство диафрагменного электролизера непрерывно поступает поток насыщенного анолита (раствора NaCl). В результате электрохимического процесса на аноде за счёт разложения галита выделяется хлор, а на катоде за счёт разложения воды — водород. При этом прикатодная зона обогащается гидроксидом натрия.

Мембранный метод с твердым катодом

Мембранный метод по сути, аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной полимерной мембраной. Мембранный метод производства эффективнее, чем диафрагменный, но сложнее в применении.

Ртутный метод с жидким катодом

Процесс проводят в электролитической ванне, которая состоит из электролизера, разлагателя и ртутного насоса, объединённых между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизера служит поток ртути. Аноды — графитовые или малоизнашивающиеся. Вместе с ртутью через электролизер непрерывно течет поток анолита — раствора хлорида натрия. В результате электрохимического разложения хлорида на аноде образуются молекулы хлора, а на катоде выделившийся натрий растворяется в ртути образуя амальгаму.

Лабораторные методы

В лабораториях для получения хлора обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):

2KMnO 4 + 16HCl → 2KCl + 2MnCl 2 + 5Cl 2 +8H 2 O K 2 Cr 2 O 7 + 14HCl → 3Cl 2 + 2KCl + 2CrCl 3 + 7H 2 O

Хранение хлора

Производимый хлор хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет. Следует отметить что при длительной эксплуатации баллонов с хлором в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

Стандарты качества хлора

Согласно ГОСТ 6718-93 «Хлор жидкий. Технические условия» производятся следующие сорта хлора

Применение

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:

Основным компонентом отбеливателей является хлорная вода

  • В производстве поливинилхлорида, пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы , одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты , игрушки, детали приборов, строительные материалы. Поливинилхлорид производят полимеризацией винилхлорида, который сегодня чаще всего получают из этилена сбалансированным по хлору методом через промежуточный 1,2-дихлорэтан.
  • Отбеливающие свойства хлора известны с давних времен, хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты: Cl 2 + H 2 O → HCl + HClO → 2HCl + O.. Этот способ отбеливания тканей, бумаги, картона используется уже несколько веков.
  • Производство хлорорганических инсектицидов — веществ, убивающих вредных для посевов насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора. Один из самых важных инсектицидов — гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано ещё в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет — в 30-х годах нашего столетия.
  • Использовался как боевое отравляющее вещество , а так же для производства других боевых отравляющих веществ: водопроводной воды, но альтернативы дезинфицирующему последействию соединений хлора предложить не могут. Материалы, из которых изготовлены водопроводные трубы, по разному взаимодействуют с хлорированной водопроводной водой. Свободный хлор в водопроводной воде существенно сокращает срок службы трубопроводов на основе полиолефинов : полиэтиленовых труб различного вида, в том числе сшитого полиэтилена, большие известного как ПЕКС (PEX, PE-X). В США для контроля допуска трубопроводов из полимерных материалов к использованию в водопроводах с хлорированной водой вынуждены были принять 3 стандарта: ASTM F2023 применительно к трубам из сшитого полиэтилена (PEX) и горячей хлорированной воде, ASTM F2263 применительно к полиэтиленовым трубам всем и хлорированной воде и ASTM F2330 применительно к многослойным (металлополимерным) трубам и горячей хлорированной воде. Положительную реакцию в части долговечности при взаимодействии с хлорированной водой демонстрируют медные сжигании (кишечнике . Всасывание и экскреция хлора тесно связаны с ионами натрия и бикарбонатами, в меньшей степени с минералокортикоидами и активностью Na + /K + — АТФ-азы. В клетках аккумулируется 10-15 % всего хлора, из этого количества от 1/3 до 1/2 — в эритроцитах . Около 85 % хлора находятся во внеклеточном пространстве. Хлор выводится из организма в основном с мочой (90-95 %), калом (4-8 %) и через кожу (до 2 %). Экскреция хлора связана с ионами натрия и калия, и реципрокно с HCO 3 - (кислотно-щелочной баланс).

    Человек потребляет 5-10 г NaCl в сутки. Минимальная потребность человека в хлоре составляет около 800 мг в сутки. Младенец получает необходимое количество хлора через молоко матери, в котором содержится 11 ммоль/л хлора. NaCl необходим для выработки в желудке соляной кислоты, которая способствует пищеварению и уничтожению болезнетворных бактерий. В настоящее время участие хлора в возникновении отдельных заболеваний у человека изучено недостаточно хорошо, главным образом из-за малого количества исследований. Достаточно сказать, что не разработаны даже рекомендации по норме суточного потребления хлора. Мышечная ткань человека содержит 0,20-0,52 % хлора, костная — 0,09 %; в крови — 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.

    Ионы хлора жизненно необходимы растениям. Хлор участвует в энергетическом обмене у растений, активируя окислительное фосфорилирование. Он необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами, стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием энергии. Хлор положительно влияет на поглощение корнями кислорода, соединений калия, кальция, магния. Чрезмерная концентрация ионов хлора в растениях может иметь и отрицательную сторону, например, снижать содержание хлорофилла, уменьшать активность фотосинтеза, задерживать рост и развитие растений. Но существуют растения, которые в процессе эволюции либо приспособились к засолению почв, либо в борьбе за пространство заняли пустующие солончаки на которых нет конкуренции. Растения произрастающие на засоленных почвах называются — галофиты, они накапливают хлориды в течение вегетационного сезона, а потом избавляются от излишков посредством листопада или выделяют хлориды на поверхность листьев и веток и получают двойную выгоду притеняя поверхнисти от солнечного света. В России галофиты произрастают на соляных куполах, выходах соляных отложений и засоленных понижениях вокруг соляных озёр Баскунчак, Эльтон.

    Среди микроорганизмов, так же известны галофилы — галобактерии — которые обитают в сильносоленых водах или почвах.

    Особенности работы и меры предосторожности

    Хлор — токсичный удушливый газ, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 .

    ПДК хлора в атмосферном воздухе следующие: среднесуточная — 0,03 мг/м³; максимально разовая — 0,1 мг/м³; в рабочих помещениях промышленного предприятия — 1 мг/м³.

    Дополнительная информация

    Производство хлора в России
    Хлорид золота
    Хлорная вода
    Хлорная известь
    Хлорид первого основания Рейзе
    Хлорид второго основания Рейзе

    Соединения хлора
    Гипохлориты
    Перхлораты
    Хлорангидриды
    Хлораты
    Хлориды
    Хлорорганические соединения

    Анализируется

    — При помощи электродов сравнения ЭСр-10101 анализирующих содержание Cl— и К+.

Хлор (лат. Chlorum), Cl, химический элемент VII группы периодической системы Менделеева, атомный номер 17, атомная масса 35,453; относится к семейству галогенов. При нормальных условиях (0°С, 0,1 Мн/м 2 , или 1 кгс/см 2) желто-зеленый газ с резким раздражающим запахом. Природный Хлор состоит из двух стабильных изотопов: 35 Сl (75,77%) и 37 Cl (24,23%). Искусственно получены радиоактивные изотопы с массовыми числами 31-47, в частности: 32, 33, 34, 36, 38, 39, 40 с периодами полураспада (T ½) соответственно 0,31; 2,5; 1,56 сек; 3,1·10 5 лет; 37,3, 55,5 и 1,4 мин. 36 Cl и 38 Cl используются как изотопные индикаторы.

Историческая справка. Хлор получен впервые в 1774 году К. Шееле взаимодействием соляной кислоты с пиролюзитом MnО 2 . Однако только в 1810 году Г. Дэви установил, что хлор - элемент и назвал его chlorine (от греч. chloros - желто-зеленый). В 1813 году Ж. Л. Гей-Люссак предложил для этого элемента название Хлор.

Распространение Хлора в природе. Хлор встречается в природе только в виде соединений. Среднее содержание Хлора в земной коре (кларк) 1,7·10 -2 % по массе, в кислых изверженных породах- гранитах и других 2,4·10 -2 , в основных и ультраосновных 5·10 -3 . Основную роль в истории Хлора в земной коре играет водная миграция. В виде иона Cl - он содержится в Мировом океане (1,93%), подземных рассолах и соляных озерах. Число собственных минералов (преимущественно природных хлоридов) 97, главный из них галит NaCl (Каменная соль). Известны также крупные месторождения хлоридов калия и магния и смешанных хлоридов: сильвин КCl, сильвинит (Na,K)Cl, карналит KCl·MgCl 2 · 6H 2 O, каинит KCl·MgSO 4 ·3H 2 O, бишофит MgCl 2 ·6H 2 O. В истории Земли большое значение имело поступление содержащегося в вулканических газах НCl в верхние части земной коры.

Физические свойства Хлора. Хлор имеет t кип -34,05°С, t пл -101°С. Плотность газообразного Хлора при нормальных условиях 3,214 г/л; насыщенного пара при 0°С 12,21 г/л; жидкого Хлора при температуре кипения 1,557 г/см 3 ; твердого Хлора при - 102°С 1,9 г/см 3 . Давление насыщенных паров Хлора при 0°С 0,369; при 25°С 0,772; при 100°С 3,814 Мн/м 2 или соответственно 3,69; 7,72; 38,14 кгс/см 2 . Теплота плавления 90,3 кдж/кг (21,5 кал/г); теплота испарения 288 кдж/кг (68,8 кал/г); теплоемкость газа при постоянном давлении 0,48 кдж/(кг·К) . Критические константы Хлора: температура 144°С, давление 7,72 Мн/м 2 (77,2 кгс/см 2), плотность 573 г/л, удельный объем 1,745·10 -3 л/г. Растворимость (в г/л) Хлора при парциальном давлении 0,1 Мн/м 2 , или 1 кгс/см 2 , в воде 14,8 (0°С), 5,8 (30°С), 2,8 (70°С); в растворе 300 г/л NaCl 1,42 (30°С), 0,64 (70°С). Ниже 9,6°С в водных растворах образуются гидраты Хлора переменного состава Cl 2 ·nН 2 О (где n = 6-8); это желтые кристаллы кубической сингонии, разлагающиеся при повышении температуры на Хлор и воду. Хлор хорошо растворяется в TiCl 4 , SiCl 4 , SnCl 4 и некоторых органических растворителях (особенно в гексане С 6 H 14 и четыреххлористом углероде CCl 4). Молекула Хлора двухатомна (Cl 2). Степень термической диссоциации Cl 2 + 243кдж = 2Cl при 1000 К равна 2,07·10 -4 %, при 2500 К 0,909%.

Химические свойства Хлора. Внешняя электронная конфигурация атома Cl 3s 2 Зр 5 . В соответствии с этим Хлор в соединениях проявляет степени окисления -1,+1, +3, +4, +5, +6 и +7. Ковалентный радиус атома 0,99Å, ионный радиус Cl - 1.82Å, сродство атома Хлора к электрону 3,65 эв, энергия ионизации 12,97 эв.

Химически Хлор очень активен, непосредственно соединяется почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании) и с неметаллами (кроме углерода, азота, кислорода, инертных газов), образуя соответствующие хлориды, вступает в реакцию со многими соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. Хлор вытесняет бром и иод из их соединений с водородом и металлами; из соединений Хлора с этими элементами он вытесняется фтором. Щелочные металлы в присутствии следов влаги взаимодействуют с Хлором с воспламенением, большинство металлов реагирует с сухим Хлором только при нагревании. Сталь, а также некоторые металлы стойки в атмосфере сухого Хлора в условиях невысоких температур, поэтому их используют для изготовления аппаратуры и хранилищ для сухого Хлора. Фосфор воспламеняется в атмосфере Хлора, образуя РCl 3 , а при дальнейшем хлорировании - РСl 5 ; сера с Хлором при нагревании дает S 2 Cl 2 , SCl 2 и другие S n Cl m . Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с Хлором. Смесь Хлора с водородом горит бесцветным или желто-зеленым пламенем с образованием хлористого водорода (это цепная реакция).

Максимальная температура водородно-хлорного пламени 2200°С. Смеси Хлора с водородом, содержащие от 5,8 до 88,5% Н 2 , взрывоопасны.

С кислородом Хлор образует оксиды: Cl 2 О, СlO 2 , Cl 2 О 6 , Сl 2 О 7 , Cl 2 О 8 , а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Оксиды Хлора малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов.

Хлор в воде гидролизуется, образуя хлорноватистую и соляную кислоты: Cl 2 + Н 2 О = НClО + НCl. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NaOH + Cl 2 = NaClO + NaCl + Н 2 О, а при нагревании - хлораты. Хлорированием сухого гидрооксида кальция получают хлорную известь.

При взаимодействии аммиака с Хлором образуется треххлористый азот. При хлорировании органических соединений Хлор либо замещает водород, либо присоединяется по кратным связям, образуя различные хлорсодержащие органических соединения.

Хлор образует с других галогенами межгалогенные соединения. Фториды ClF, ClF 3 , ClF 3 очень реакционноспособны; например, в атмосфере ClF 3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом и фтором - оксифториды Хлора: ClO 3 F, ClO 2 F 3 , ClOF, ClOF 3 и перхлорат фтора FClO 4 .

Получение Хлора. Хлор начали производить в промышленности в 1785 году взаимодействием соляной кислоты с оксидом марганца (II) или пиролюзитом. В 1867 году английский химик Г. Дикон разработал способ получения Хлора окислением НСl кислородом воздуха в присутствии катализатора. С конца 19 - начала 20 века Хлор получают электролизом водных растворов хлоридов щелочных металлов. По этим методам производится 90-95% Хлора в мире. Небольшие количества Хлора получаются попутно при производстве магния, кальция, натрия и лития электролизом расплавленных хлоридов. Применяются два основные метода электролиза водных растворов NaCl: 1) в электролизерах с твердым катодом и пористой фильтрующей диафрагмой; 2) в электролизерах с ртутным катодом. По обоим методам на графитовом или окисном титано-рутениевом аноде выделяется газообразный Хлор. По первому методу на катоде выделяется водород и образуется раствор NaOH и NaCl, из которого последующей переработкой выделяют товарную каустическую соду. По второму методу на катоде образуется амальгама натрия, при ее разложении чистой водой в отдельном аппарате получаются раствор NaOH, водород и чистая ртуть, которая вновь идет в производство. Оба метода дают на 1 т Хлора 1,125 т NaOH.

Электролиз с диафрагмой требует меньших капиталовложений для организации производства Хлора, дает более дешевый NaOH. Метод с ртутным катодом позволяет получать очень чистый NaOH, но потери ртути загрязняют окружающую среду.

Применение Хлора. Одной из важных отраслей химические промышленности является хлорная промышленность. Основные количества Хлора перерабатываются на месте его производства в хлорсодержащие соединения. Хранят и перевозят Хлор в жидком виде в баллонах, бочках, железнодорожных цистернах или в специально оборудованных судах. Для индустриальных стран характерно следующее примерное потребление Хлор: на производство хлорсодержащих органических соединений - 60-75%; неорганических соединений, содержащих Хлор, -10-20%; на отбелку целлюлозы и тканей- 5-15%; на санитарные нужды и хлорирование воды - 2-6% от общей выработки.

Хлор применяется также для хлорирования некоторых руд с целью извлечения титана, ниобия, циркония и других

Хлор в организме. Хлор - один из биогенных элементов, постоянный компонент тканей растений и животных. Содержание Хлора в растениях (много Хлора в галофитах) - от тысячных долей процента до целых процентов, у животных - десятые и сотые доли процента. Суточная потребность взрослого человека в Хлоре (2-4 г) покрывается за счет пищевых продуктов. С пищей Хлор поступает обычно в избытке в виде хлорида натрия и хлорида калия. Особенно богаты Хлором хлеб, мясные и молочные продукты. В организме животных Хлор - основное осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и некоторых тканей. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Регуляция кислотно-щелочного равновесия в тканях осуществляется наряду с других процессами путем изменения в распределении Хлора между кровью и других тканями. Хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. Хлор положительно влияет на поглощение корнями кислорода. Хлор необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами. В состав большинства питательных сред для искусственного культивирования растений Хлор не входит. Возможно, для развития растений достаточны весьма малые концентрации Хлора.

Отравления Хлором возможны в химической, целлюлозно-бумажной, текстильной, фармацевтической промышленности и других. Хлор раздражает слизистые оболочки глаз и дыхательных путей. К первичным воспалительным изменениям обычно присоединяется вторичная инфекция. Острое отравление развивается почти немедленно. При вдыхании средних и низких концентраций Хлор отмечаются стеснение и боль в груди, сухой кашель, учащенное дыхание, резь в глазах, слезотечение, повышение содержания лейкоцитов в крови, температуры тела и т. п. Возможны бронхопневмония, токсический отек легких, депрессивные состояния, судороги. В легких случаях выздоровление наступает через 3-7 суток. Как отдаленные последствия наблюдаются катары верхних дыхательных путей, рецидивирующий бронхит, пневмосклероз и других; возможна активизация туберкулеза легких. При длительном вдыхании небольших концентраций Хлора наблюдаются аналогичные, но медленно развивающиеся формы заболевания. Профилактика отравлений: герметизация производств, оборудования, эффективная вентиляция, при необходимости использование противогаза. Производство Хлора, хлорной извести и других хлорсодержащих соединений относится к производствам с вредными условиями труда.

Он широко применяется в промышленности, сельском хозяйстве, для лекарственных и бытовых нужд. Ежегодное производство хлора в мире составляет 55,5 млн. т.: в силу столь широкого распространения этого вещества аварии, связанные с его утечкой, довольно часты (они происходят как на промышленных объектах, так и при транспортировке хлора).

Зачастую происходит не только поражение промышленного объекта, но и местности за его пределами (из-за физико-химических свойств хлора: он в 2,5 раза тяжелее воздуха, поэтому скапливается в низинах, заражению подвергаются источники воды, так как хлор очень хорошо растворим в воде).

Поэтому сегодня особенно актуально знание объектов экономики, которые производят или используют хлор, симптомов отравления хлором, умения оказания первой помощи, а также знание СИЗ, используемых в зоне заражения.

Перед тем, как исследовать хлор как АХОВ, выделить симптомы отравления этим химическим веществом и определить, в чём заключается доврачебная и первая медицинская помощь, необходимо познакомиться с его общей характеристикой и областями использования.

Хлор (от греч. – «зелёный»). Химическая формула – Cl2 (молекулярная масса – 70,91). Соединение с хлором (газообразный хлороводород) было впервые получено Д. Пристли в 1772 году. Хлор в «чистом виде» был получен два года спустя К. В. Шееле.

Плотность жидкого хлора – 1560 кг/м3. Он негорюч и реактивен: на свету при повышенных температурах (к примеру, в случае пожара) взаимодействует с водородом (взрыв), в результате может образоваться более опасный газ – фосген.

Хлор применяется во многих сферах промышленности, науки и, зачастую, в быту. Перечислим области использования хлора в промышленности:

– он применяется при производстве поливинилхлорида, синтетического каучука, пластикатов (эти материалы служат для изготовления линолеума, одежды, обуви, изоляции для проводов и др.);

– в целлюлозно-бумажной промышленности хлор используют для отбеливания бумаги и картона (он также используется для отбеливания тканей);

– он задействован в производстве хлорорганических инсектицидов (эти вещества, уничтожающие вредных насекомых на посевах, используются в сельском хозяйстве);

– он используется в процессе обеззараживания («хлорирования») питьевой воды и очистки сточных вод;

– он широко применяется в химическом производстве бертолетовой соли, лекарств, хлорной извести, ядов, соляной кислоты, хлоридов металлов;

– в металлургии его задействуют для производства чистых металлов;

– это вещество используют как индикатор солнечных нейтрино.

Хлор хранится в цилиндрических резервуарах (10…250 м3) и шаровых(600…2 000 м3) резервуарах под давлением собственных паров (до 1,8 МПа). Сжижается под давлением при обычной температуре. Перевозится в контейнерах, баллонах, цистернах, выступающих временными хранилищами.

Введение……………………………………………………………………………………………3

1. Символ элемента, положение его в периодической системе элементов Д.И. Менделеев. Атомная масса…………………………………………………………………………………….4

2. Строение ядра атома хлора. Возможные изотопы. Примеры………………………….5

3. Электронная формула атома: распределение электронов по уровням, подуровням, ячейкам Хунда. Возбуждённое состояние атома хлора………………………………………………….6

4. Валентность атома алюминия в стационарном и возбуждённом состояниях. Возможные степени окисления атома хлора. Окислительно – восстановительные свойства. Примеры схем перемещения электронов………………………………………………………………………….8

5. Эквиваленты хлора и его соединений. Примеры расчётов……………………………..11

6. Химические свойства хлора и его соединений. Примеры реакций……………………12

7. Виды концентраций……………………………………………………………………….15

8. Электролитическая диссоциация. Схема процесса диссоциации гидроксида. Константа диссоциации………………………………………………………………………………………17

9. Расчёт pH, pOH 0.01м раствора гидроксида или соли элемента………………………21

10. Гидролиз…………………………………………………………………………………..23

11. Качественный анализ хлора………………………………………………………………24

12. Методы количественного определения атома хлора или его соединений……………27

12.1. Гравиметрический метод анализа атома хлора………………………………………...27

13. Заключение……………………………………………………………………………….29

Список литературы………………………………………………………………………………32

Введение

Соединение с водородом - газообразный хлороводород - было впервые получено Джозефом Пристлив 1772 г. Хлор был получен в1774 г.шведским химикомКарлом Вильгельмом Шееле, описавшим его выделение при взаимодействиипиролюзитассоляной кислотойв своём трактате о пиролюзите:

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать сзолотомикиноварью, а также его отбеливающие свойства. Однако Шееле, в соответствии с господствовавшей в химиитого времени теориифлогистона, предположил, что хлор представляет собой дефлогистированную муриевую (соляную) кислоту.БертоллеиЛавуазьев рамках кислородной теории кислот обосновали, что новое вещество должно быть оксидом гипотетическогоэлементамурия . Однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которомуэлектролизомудалось разложитьповаренную сольна натрий хлор, доказав элементарную природу последнего.

1. Символ элемента, положение его в периодической системе элементов д.И. Менделеев. Атомная масса

Хлор (от греч. χλωρός - «зелёный») - элемент 17-й группы периодической таблицы химических элементов (по устаревшей классификации - элемент главной подгруппы VII группы), третьего периода, с атомным номером 17. Обозначается символом Cl (лат. Chlorum). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора - дословно «галоген» переводится как солерод - но оно не прижилось и впоследствии стало общим для 17-й (VIIA) группы элементов, в которую входит и хлор).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях - ядовитый газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом. Молекула хлора двухатомная (формула Cl2).

Атомная масса

(молярная масса)

[комм 1] а. е. м. (г/моль)

2. Строение ядра атома хлора. Возможные изотопы. Примеры

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22%.

Изотоп

Относительная масса, а.е.м.

Период полураспада

Тип распада

Ядерный спин

Стабилен

β-распадв 36 Ar

Стабилен

37,2 минуты

β-распад в 38 Ar

55,6 минуты

β-распад в 39 Ar

1,38 минуты

β-распад в 40 Ar

3. Электронная формула атома: распределение электронов по уровням, подуровням, ячейкам Хунда. Возбуждённое состояние атома хлора

Хлор в периодической системе химических элементов находится в 3 периоде, VII группе, главной подгуппе (подгуппа галогенов) .

Заряд ядра атома Z = + = + 17

Количество протонов N(p+) = 17

Количество электронов N(e-) = 17

В возбужденном сотоянии:

1) 3s2 3p5 3d0 + hn --> 3s2 3p4 3d1

3 неспаренных электрона (2 электрона на 3р-подуровне и 1 электрон на 3d-подуровне) , следовательно валентность равна 3

Пример соединения: HClO2, Cl2O3

2) 3s2 3p4 3d1 + hn --> 3s2 3p3 3d2

5 неспаренных электронов (3 электрона на 3р-подуровне и 2 электрона на 3d-подуровне) , следовательно валентность равна 5

Пример соединения: HClO3, Cl2O5

3) 3s2 3p3 3d2 + hn --> 3s1 3p3 3d3

7 неспаренных электронов (1 электрон на 3s-подуровне, 3 электрона на 3р-подуровне и 3 электрона на 3d-подуровне), следовательно валентность равна 5

4. Валентность атома алюминия в стационарном и возбуждённом состояниях. Возможные степени окисления атома хлора. Окислительно – восстановительные свойства. Примеры схем перемещения электронов

Валентные электроны: 3s2 3p5

В невозбужденном состоянии у атома хлора на 3 энергетическом уровне находится один неспаренный электрон, следовательно, невозбужденный атом хлора может проявлять валентность 1. Валентность 1 проявляется в следующих соединениях:

Газообразный хлор Cl2 (или Сl-Cl)

Хлорид натрия NaCl (или Na+ Cl-)

Хлороводород HCl (или H-Cl)

Хлорноватистая кислота HOCl (или H-O-Cl)

Окислительно – восстановительные свойства.

HCl - степень окисления хлора -1

HClO3 - степень окисления хлора +5

HClO4 - степень окисления хлора +7

Промежуточная степень окисления говорит о том, что данный элемент может проявлять как восстановительные так и окислительные свойства, это - HClO3

Окислительные свойства проявляют элементы, у которых максимальная степень окисления (она равна номеру группы, в которой находится элемент). Значит, HClO4 - окислитель.

Восстановительными свойствами обладает элемент с наменьшей степенью окисления, т.е. HCl - восстановитель.

Хлор является сильным окислителем. Различные соединения хлора могут быть использованы в качестве окислителей. Это хлор С12), хлорноватистая кислота НСЮ, соли хлорноватистой кислоты - гипохлорит натрия NaCIO или гипохлорит кальция Са(СЮ)2 и оксид хлора СЮ2.

Хлорирование применяют для удаления из сточных вод фенолов, крезолов, цианидов, сероводорода. Для борьбы с биологическими обрастаниями сооружений его используют в качестве биоцида. Применяют хлор и для обеззараживания воды.

Хлор поступает на производство в жидком виде с содержанием не менее 99,5 %. Хлор является высокотоксичным газом, он обладает способностью накапливаться и концентрироваться в небольших углублениях. С ним достаточно трудно работать. При попадании в воду происходит гидролиз хлора с образованием соляной кислоты. С некоторыми органическими веществами, которые присутствуют в растворе, С12 может вступать в реакции хлорирования. В результате образуются вторичные хлорорганические продукты, которые обладают высокой степенью токсичности. Поэтому применение хлора стремятся ограничить.

Хлорноватистая кислота НСЮ обладает такой же окислительной способностью, как и хлор. Однако ее окислительные свойства проявляются только в кислой среде. Кроме того хлорноватистая кислота является нестабильным продуктом - со временем и на свету она разлагается.

Широкое применение получили соли хлорноватистой кислоты. Гипохлорит кальция Са(СЮ)2 выпускается трех сортов с концентрацией активного хлора от 32 до 35 %. На практике используют также двухосновную соль Са(СЮ)2- 2Са(ОН)г 2Н20.

Наиболее устойчива соль гипохлорита натрия NaOCl * 5Н20, которую получают при химическом взаимодействии газообразного хлора с раствором щелочи или при электролизе поваренной соли в ванне без диафрагмы.

Оксид хлораСO2 - газ зеленовато-желтого цвета, хорошо растворим в воде, сильный окислитель. Его получают взаимодействием хлорита NaC102 с хлором, соляной кислотой или озоном. При взаимодействии оксида хлора с водой не ротекают реакции хлорирования, что исключает образование хлорорганических веществ. В последнее время проводятся широкие разработки по выяснению условий замены хлора на оксид хлора в качестве окислителя. На ряде российских заводов внедрены передовые технологии с использованием СO2.

Основным промышленным методом получения является концентрированного NaCl (рис. 96). При этом на выделяется (2Сl’ – 2e– = Сl 2), а в катодном пространстве выделяется (2Н · + 2e – = H 2) и образует NaOH.

При лабораторном получении обычно пользуются действием МnО 2 или КМnО 4 на :

МnО 2 + 4НСl = МnСl 2 + Cl 2 + 2Н 2 О

2КМnО 4 + 16НСl = 2КСl + 2МnСl 2 + 5Сl 2 + 8Н 2 О

По своей характерной химической функции подобен - он также является ак­тивным одновалентным металлои­дом. Однако его меньше, чем у . Поэтому последний способен вытеснять из соединений.

Взаимодействие с по Н 2 + Cl 2 = 2HCl + 44 ккал

при обычных условиях протекает крайне медленно, но при нагревании смеси или ее сильном освещении (прямым солнечным светом, горящим и т. д.) сопровождается .

NaCl + H 2 SO 4 = NaHSO 4 + HCl

NaCl + NaHSO 4 = Na 2 SO 4 + HCl

Первая из них отчасти протекает уже при обычных условиях и практически нацело – при слабом нагревании; вторая осуществляется лишь при более высоких . Для проведения процесса служат механические большой производительности.

Сl 2 + Н 2 О = НСl + НОСl

Будучи соединением неустойчивым, НОСl медленно разлагается даже в таком разбавленном . называются хлорноватистокислыми, или . Сама НОСl и ее являются очень сильными .

Добиться этого проще всего добавлением к реакционной смеси . Так как по мере образования Н будут связываться ОН" в недиссоциированные , сместится вправо. Применяя, например, NaOH имеем:

Сl 2 + Н 2 О <–––> НОСl + НСl

HOCl + НСl + 2NaOH –––>NaOCl + NaCl + 2H 2 O

или в общем:

Сl 2 + 2NaOH –––>NaOCl + NaCl + Н 2 О

В результате взаимодействия с получается, следовательно, смесь хлорноватистой и . Образующийся (« ») обладает сильными окислительными свойствами и широко применяется для отбелки и .

1) НОСl = НСl + О

2) 2НОСl = Н 2 О + Сl 2 О

3) 3HOCl = 2НСl + НСlО 3

Все эти процессы способны протекать одновременно, но их относительные скорости сильно зависят от имеющихся условий. Изменяя последние, можно добиться того, что превращение пойдет практически нацело по какому–нибудь одному направлению.

Под действием прямого солнечного света разложение идет по первому из них. Так же протекает оно в присутствии , способных легко присоединять , и некоторых (например» ).

Распад НОСl по третьему типу особенно легко идет при нагревании. Поэтому действие на горячий выражается суммарным уравнением:

ЗСl 2 + 6КОН = KClO 3 + 5КСl + 3Н 2 О

2КСlO 3 + Н 2 С 2 O 4 = K 2 CO 3 + CO 2 + H 2 O + 2ClO 2

образуется зеленовато–желтая двуокись (г. пл. – 59 °С, т. кип. + 10 °С). Свободная ClO 2 малоустойчива и способна разлагаться со

Loading...Loading...