Типовые звенья САУ. Типовые динамические звенья систем автоматического управления Динамические свойства звеньев систем управления

СТРУКТУРНЫЕ СХЕМЫ ЛИНЕЙНЫХ САУ

Типовые звенья линейных САУ

Любые сложные САУ могут быть представлены как совокупность более простых элементов (вспомним функциональные и структурные схемы ). Поэтому для упрощения исследования процессов в реальных системах они представляются в виде совокупности идеализированных схем , которые точно описываются математически и приближенно харак­теризуют реальные звенья систем в определенном диапазоне частот сигналов.

При составлении структурных схем вводятся некие типовые элементарные звенья (простые, далее не делимые), характеризующиеся только своими передаточными функциями , вне зависимости от их конструктивного исполнения, назначения и принципа действия. Классифицируют их по видам уравнений описывающих их работу. В случае линейных САУ различают следующие типы звеньев :

1.Описываемые линейными алгебраическими уравне­ниями относительно выходного сигнала :

а) пропорциональное (статическое, безынерционное);

б) запаздывающее .

2.Описываемые дифференциальными уравнениями первого порядка с постоянными коэффициентами :

а) дифференцирующее ;

б) инерционно-дифференцирующее (реальное дифферен­цирующее);

в) инерционное (апериодическое);

г) интегрирующее (астатическое);

д) интегро-дифференцирующее (упругое).

3.Описываемые дифференциальными уравнениями вто­рого порядка с постоянными коэффициентами :

а) инерционное звено второго порядка (апериодическое звено второго порядка, колебательное).

Используя математический аппарат, изложенный выше, рассмотрим передаточные функции , переходные и импульсные переходные (весовые) характеристики , а также частотные характеристики этих звеньев.

При­ведем формулы, которые будут использованы для этой цели.

1. Передаточная функция : .

2. Переходная характеристика : .

3. : или .

4. КЧХ : .

5. Амплитудная частотная характеристика : ,

где , .

6. Фазовая частотная характеристика : .

По этой схеме и исследуем типовые звенья.

Заметим, что хотя для некоторых типовых звеньев n (порядок производной выходного параметра в левой части уравнения) равняется m (порядок производной входного параметра в правой части уравнения), а не больше m , как говорилось ранее, однако при конструировании реальных САУ из этих звеньев условие m для всего САУ обычно всегда выполняется.

Пропорциональное (статическое , безынерционное ) звено . Это самое простое звено , вы­ходной сигнал которого прямо пропорционален входному сигналу :

где k - коэффициент пропорциональности или передачи звена.

Примерами такого звена являются: а) клапаны с линеаризованными характеристиками (когда изменение расхода жидкости пропорционально степени изменения положения штока ) в рассмотренных выше примерах систем регулирования; б) делитель напряжения; в) рычаж­ная передача и др.

Переходя в (3.1) к изображениям, имеем:

1. Передаточная функция : .

2. Переходная характеристика : , следовательно .

3. Импульсная переходная характеристика : .

4. КЧХ : .

6. ФЧХ: .

Принятое описание связи между входом и выходом справедливо только для идеального звена и соответствует реальным звеньям лишь при низких частотах , . При в реальных звеньях коэффициент передачи k начинает зависеть от частоты и при высоких частотах падает до нуля.

Запаздывающее звено . Это звено описывается уравне­нием

где – время запаздывания.

Примером запаздывающего звена служат: а) длинные электрические линии без потерь; б) длинный трубопровод и др.

Передаточная функция , переходная и импульсная переходная характеристика , КЧХ, а также АЧХ и ФЧХ этого звена:

2. , значит: .

На рис.3.1 изображены: а) годограф КЧХ запаздывающего звена ; б) АЧХ и ФЧХ запазды­вающего звена. Заметим, что при увеличении конец вектора описывает по часовой стрелке все возрас­тающий угол.

Рис.3.1 . Годограф (а) и АЧХ, ФЧХ (б) запаздывающего звена.

Интегрирующее звено . Это звено описывается уравне­нием

где - коэффициент передачи звена.

Примерами реальных элементов, эквивалентные схемы которых сводятся к интегрирующему звену , являются: а) электрический конденсатор, если считать входным сигналом ток, а выходным – напряжение на конденсаторе: ; б) вращающийся вал, если считать входным сигналом угловую скорость вращения, а выходным – угол поворота вала: ; и т.д.

Определим характеристики данного звена:

2. .

Воспользуемся таблицей преобразования Лапласа 3.1, получаем:

.

Умножаем на так как функция при .

3. .

4. .

На рис.3.2 показаны: а) годограф КЧХ интегрирующего звена; б) АЧХ и ФЧХ звена; в) переходная характеристика звена.

Рис.3.2 . Годограф (а), АЧХ и ФЧХ (б), переходная характеристика (в) интегрирующего звена.

Дифференцирующее звено . Это звено описывается урав­нением

где – коэффициент передачи звена.

Найдем характеристики звена:

2. , учитывая, что , находим: .

3. .

4. .

На рис.3.3 показаны: а) годограф звена; б) АЧХ и ФЧХ звена.

а ) б )

Рис. 3.3 . Годограф (а), АЧХ и ФЧХ (б) дифференцирующего звена.

Примером дифференцирую­щего звена являются идеальный конденсатор и индуктивность . Это следует из того, что напряжение u и ток i связаны для конденсатора С и индуктивности L соответственно следующими соотношениями:

Отметим, что реальная емкость обладает небольшой емкостной индуктивностью , реальная индуктивность имеет межвитковую емкость (которые особенно сильно проявляются на больших частотах), что приводит указанные выше формулы к следующему виду:

, .

Таким образом, дифференцирующее звено не может быть технически реализовано , так как порядок пра­вой части его уравнения (3.4) больше порядка левой части. А нам известно, что должно выполняться условие n > m или, в крайнем случае, n = m .

Однако можно прибли­зиться к этому уравнению данного звена , использовав инерционно-дифференцирующее (реальное дифференцирующее )звено .

Инерционно-дифференцирующее (реальное дифференцирующее ) звено описывается уравнением:

где k - коэффициент передачи звена, Т - постоянная времени.

Передаточная функция , переходная и импульсная переходная характеристики , КЧХ, АЧХ и ФЧХ этого звена определяются формулами:

Используем свойство преобразования Лапласа – смещение изображения (3.20), согласно которому: если , то .

Отсюда: .

3. .

5. .

6. .

На рис.3.4 приведены: а) график КЧХ; б) АЧХ и ФЧХ звена.

а ) б )

Рис.3.4 . Годограф (а), АЧХ и ФЧХ реального дифференцирующего звена.

Для того чтобы свойства реального дифференцирующего звена приближались к свойствам идеального , необходимо одновременно увеличивать коэффициент передачи k и уменьшать постоянную времени Т так, чтобы их произведение оста­валось постоянным:

kT = k д,

где k д – коэффициент передачи дифференцирующего звена.

Отсюда видно, что в размерность коэффициента передачи k д дифференцирующего звена входит время .

Инерционное звено первого порядка (апериодическое звено ) одно из самых распространен­ных звеньев САУ. Оно описывается уравнением:

где k – коэффициент передачи звена, Т – постоянная времени.

Характеристики данного звена определяются формулами:

2. .

Пользуясь свойствами интегрирования оригинала и смещением изображения имеем:

.

3. , т.к. при , то на всей временной оси данная функция равна 0 ( при ).

5. .

6. .

На рис.3.5 показаны: а) график КЧХ; б) АЧХ и ФЧХ звена.

Рис.3.5 . Годограф (а), АЧХ и ФЧХ инерционного звена первого порядка.

Интегро-дифференцирующее звено . Это звено описы­вается дифференциальным уравнением первого порядка в наиболее общем виде:

где k - коэффициент передачи звена, Т 1 и Т 2 - постоянные времени.

Введем обозначение:

В зависимости от значения t звено будет обладать раз­личными свойствами. Если , то звено по своим свойствам будет приближаться к интегрирующему и инерционному звеньям. Если , то данное звено по свойствам будет ближе к диф­ференцирующему и инерционно-дифференцирующему .

Определим характеристики интегродифференцирующего звена :

1. .

2. , отсюда следует:

Т.к. при t ® 0, то:

.

6. .

На рис.3.6. приведены: а) график КЧХ; б) АЧХ; в) ФЧХ; г) переходная характеристика звена.

а ) б )

в ) г )

Рис.3.6 . Годограф (а), АЧХ (б), ФЧХ (в), переходная характеристика (г) интегродифференцирующего звена.

Инерционное звено второго порядка . Это звено описывается дифференциальным уравнением второго порядка:

где (капа) – постоянная затухания; Т - постоянная времени, k - коэффициент передачи звена.

Реакция системы, описываемой уравнением (3.8), на единичное ступенчатое воздействие при представляет собой затухающие гармонические колебания , в этом случае звено еще называется колебательным . При колебания не возник­нут, и звено , описываемое уравнением (3.8) называется апериодическим звеном второго порядка . Если , то колебания будут незатухающими с частотой .

Примером конструктивного выполнения данного звена могут служить: а) электрический колебательный контур, содержащий емкость , индуктивность и омичес­кое сопротивление ; б) масса , подвешенная на пружине и имеющая демпфирующее устройство , и т.д.

Определим характеристики инерционного звена второго порядка :

1. .

2. .

Корни характеристического уравнения стоящего в знаменателе определяются:

.

Очевидно, что здесь возможно три случая:

1) при корни характеристического уравнения отрицательные вещественные разные и , тогда переходная характеристика определяется:

;

2) при корни характеристического уравнения отрицательные вещественные одинаковые :

3) при корни характеристического уравнения звена являются комплексно -сопряженными , причем

переходная характеристика определяется формулой:

,

т.е., как отмечалось выше, она приобретает колебательный характер .

3. Также имеем три случая:

1) ,

т.к. при ;

2) , т.к. при ;

3) , т.к. при .

5. .

Алгоритмические звенья, которые описываются обыкновенными дифференциальными уравнениями первого и второго порядка, получили название типовых динамических звеньев .

Типовые динамические звенья являются основными составными частями алгоритмических структур непрерывных систем управления, знание их характеристик существенно облегчает анализ таких систем.

Классификацию удобно осуществить, рассматривая различные частные формы дифференциального уравнения:

наименование

примечания

Безынерционное

(пропорциональное)

Статическое

элементарное

Инерционное первого порядка

(апериодическое)

Статическое

инерционное

Инерционное второго порядка

(апериодическое)

Т 1 2Т 2 Статическое

инерционное

Инерционное второго порядка

(колебательное)

Статическое

инерционное

Идеальное интегрирующее

элементарное

Реальное интегрирующее

инерционное

Идеальное дифференцирующее

элементарное

Реальное дифференцирующее

инерционное

Изодромное

(пропорционально-

интегрирующее)

Форсирующее

(пропорционально-

дифференцирующее)

Статическое

Упругое (интегро-

дифференцирующее,

реально-форсирующее)

-преобладают

интегрирующие свойства

-преобладают

дифференцирующие

свойства

Статическое, инерционное

Звенья, у которых а 2 0 и в 1 0 обладают статизмом, т.е. однозначной связью между входной и выходной переменными в статическом режиме. Звенья – статические, или позиционные.

Звенья, у которых 2 из трех коэффициентов а 2 0, а 1 0, а 0 0, обладают инерционностью (замедлением).

У звеньев 1,5,7 только 2 коэффициента 0. Они являются простейшими, или элементарными. Все остальные типовые звенья могут быть образованы из элементарных путем последовательного, параллельного и встречно- параллельного соединения.

Апериодическое звено

Динамика процесса описывается следующим уравнением:

где k  передаточный коэффициент или коэффициент усиления, Т  постоянная времени, характеризующая инерционность звена.

1. Переходная характеристика:

1)

2) В точке ноль строят касательную переходной характеристики, определяют точку пересечения с линией k . Абсцисса этой точки и есть постоянная времени.

2. Импульсная переходная характеристика, или функция веса, звена может быть получена путем дифференцирования функции h (t ) :

3. Передаточная функция:

П

рименим преобразование Лапласа к уравнению:

Структурная схема звена при этом будет выглядеть следующим образом:

Подставляя в передаточную функцию p = j , получим амплитудно-фазо-частотную функцию:

5. АЧХ:

График АЧХ строится по точкам:

Здесь с – частота сопряжения.

Гармонические сигналы малой частоты ( < с ) пропускаются звеном хорошо – с отношением амплитуд выходной и входной величин, близким к передаточному коэффициенту k . Сигналы большой частоты ( > с ) плохо пропускаются звеном: отношение амплитуд существенно < коэффициента k . Чем больше постоянная времени Т , т.е. чем больше инерционность звена, тем меньше АЧХ вытянута вдоль оси частот, или, тем у же полоса пропускания частот.

Т.о. инерционное звено первого порядка по своим частотным свойствам является фильтром низкой частоты .

ФЧХ инерционного звена первого порядка равна:

Чем больше частота входного сигнала, тем больше отставание по фазе выходной величины от входной. Максимально возможное отставание равно 90 0 . При частоте с = 1 сдвиг фаз равен –45 0 .

Рассмотрим теперь ЛАЧХ звена. Точная ЛАЧХ описывается выражением:

При построении ЛАЧХ апериодического звена прибегают к асимптотическим методам или, другими словами, строят асимптотический график ЛАЧХ.

Значение сопрягающей частоты w c , при которой пересекаются обе асимптоты, найдем из условия


Посмотрим, что будет при построении не асимптотической, а точной ЛАЧХ:

Точная характеристика (ЛАЧХ) в точке среза будет меньше асимптотической ЛАЧХ на величину
.

Существует так называемое неустойчивое апериодическое звено

Колебательное звено

Динамика процессов в колебательном звене описывается уравнением:

,

где k  коэффициент усиления звена; Т  постоянная времени колебательного звена;  коэффициент демпфирования звена (или коэффициент затухания).

В зависимости от величины коэффициента демпфирования различают четыре типа звеньев:

а) колебательное 0<<1;

б) апериодическое звено II порядка>1;

в) консервативное звено =0;

г) неустойчивое колебательное звено <0.

1. Переходная характеристика колебательного звена:

А

мплитуды первых двух колебаний определяют величину
, или её можно найти, определив постоянную времени экспоненты, с которой происходит затухание

Чем ближе коэффициент затухания к единице, тем меньше амплитуда колебаний, чем меньше Т , тем быстрее устанавливаются переходные процессы.


При >1 колебательное звено называется апериодическим звеном второго порядка (последовательное соединение двух апериодических звеньев с постоянными времени Т 1 и Т 2 ).

, или можно записать так
.

Здесь 0 – величина, обратная постоянной времени (
);
.

Такое звено в литературе называют консервативным звеном .

Все переходные характеристики будут колебаться вдоль величины k .

2. Импульсная переходная характеристика:

3

.Передаточная функция:

График АФЧХ будет выглядеть следующим образом:

Это характеристика для колебательного звена и для апериодического звена второго порядка.

Для апериодического звена -
.

-

АФЧХ для консервативного звена.

.

А

ЧХ при частоте
имеет максимум (резонансный пик), равный

Отсюда видно, что, чем меньше коэффициент , тем больше резонансный пик.

Т

.о., по графику АЧХ видно, что колебательное звено, как и все инерционные звенья, хорошо пропускает сигналы низкой частоты и плохо – сигналы высокой частоты; если частота гармонического входного сигнала близка к частоте собственных колебаний звена, то отношение амплитуды выходного сигнала к амплитуде входного больше передаточного коэффициента k .

Для случая б) график будет аналогичным, только перегиб будет чуть меньше (штриховая линия на графике).

Где

Асимптотическая ЛАЧХ колебательного звена:

Определяем наклон на втором участке:

Шаблон к графику а) дается от 0 до 1 шагом в 0,1.

К

онсервативное звено:

Структурная схема колебательного звена будет выглядеть следующим образом:

Примером колебательного звена является любая RLС- цепь.

Общие свойства статических звеньев

    В установившемся режиме выходная переменная y однозначно связана с входной переменной x уравнением статики

    Передаточный коэффициент звена связан с передаточной функцией соотношением

    Звенья являются звеньями низкой частоты (кроме безынерционного), т.е. хорошо пропускают низкочастотные сигналы и плохо – высокочастотные, в режиме гармонических колебаний создают отрицательные фазовые сдвиги.

Звеном САУ называют математическую модель элемента или соединения элементов любой части системы. Звенья, как и системы, могут описываться дифференциальными уравнениями высокого порядка и в общем случае ихпередаточные функции могут быть представлены как

Но их можно представить как соединения типовых или элементарных звеньев, порядок дифференциальных уравнений которых не выше второго.

Из курса алгебры на основании теоремы Безу известно, что полином произвольного порядка можно разложить на простые множители вида


,
. (4.64)

Поэтому передаточную функцию (4.63) можно представить, как произведение простых множителей вида (4.64) и простых дробей вида

,
,
. (4.65)

Звенья, передаточные функции которых имеют вид простых множителей (4.63) или простых дробей (4.64), называют типовыми или элементарными звеньями.

Прежде чем переходить к изучению элементарных звеньев, вспомним формулы для модуля и аргумента комплексного числа. Пусть комплексное число представлено в виде отношения двух произведений комплексных чисел

Так как
,
, то для модуля и аргумента комплексного числа имеем

,
.

Таким образом, справедливо следующее правило модулей и аргументов комплексных чисел: модуль комплексного числа, представленного в виде отношения двух произведений комплексных чисел, равен отношению произведения модулей сомножителей числителя к произведению модулей сомножителей знаменателя, а его аргумент - разности суммы аргументов сомножителей числителя и суммы аргументов сомножителей знаменателя.

Пропорциональное звено . Пропорциональным называют звено, которое описывается уравнением
или передаточной функцией
.

Частотные и временные функции этого типового эвена имеют вид:

,
,
,

,
,
,
.

Ha рис. 4.5 представлены некоторые из характеристик пропорционального звена: амплитудно-фазовая частотная характеристика (4.5 а) - это точка К на действительной оси; фазовая частотная

jV а) L (w ) б) h (t ) в)

20 lgK K

K U w t

Рис.4.5 Характеристики пропорционального звена

характеристика (или АФЧХ) совпадает с положительной осью частот; логарифмическая амплитудная частотная характеристика (рис. 4.56) параллельна оси частот и проходит на уровне. Переходная характеристика (рис.4.5в) параллельна оси времени и проходит на уровне
.

Интегрирующее звено. Интегрирующим называют звено, которое описывается уравнением
или передаточной функцией
. Частотная передаточная функция
.

Остальные частотные и временные функции имеют вид:

,
,
,
,

,
,
.

АФЧХ (рис.4.6а) интегрирующего звена совпадает с отрицательной мнимой полуосью. ЛФЧХ (рис.4.66) параллельна оси частот и проходит на уровне : сдвиг фазы не зависит от частоты и равен.

ЛАЧХ (рис.4.6б) - наклонная прямая, проходящая через точку с координатами
и
. Как видно из уравнения при увеличении частоты наI декаду ордината
, уменьшается на 20 дБ. Поэтому наклон ЛАЧХ равен -20 дБ/дек (читается: минус двадцать децибел на декаду).

Переходная характеристика представляет собой прямую, проходящую через начало координат с угловым коэффициентом наклона, равным k . (рис.4.6в).

а) б) в)

jV U L (w ) (w) h (t )

0.1 1.0 w arctgK

-
/2 t

Рис 4.6 Характеристики интегрирующего звена

Дифференцирующее звено. Дифференцирующим называют звено, которое описывается уравнением
или передаточной функцией
.

Частотные и временные функции этого звена имеют вид

,
,
,
,
,

,
,
.

jV а) L (w ) (w ) б)

+
/2

0,1 1,0 10

Рис.4.7 Характеристики дифференцирующего звена

АФЧХ (рис 4.7а) совпадает с положительной мнимой полуосью. ЛФЧХ (рис 4.7б) параллельна оси частот и проходит на уровне
, то есть сдвиг фазы не зависит от частоты и равен
/2.

ЛАЧХ есть прямая линия, проходящая через точку с координатами
=1,
и имеющая наклон 20 дБ/дек (читается: плюс двадцать децибел на декаду):
увеличивается на 20 дБ при увеличении частоты на одну декаду.

Апериодическое звено . Апериодическим эвеном первого порядка называют звено, которое описывается уравнением

(4.66)

или передаточной функцией

. (4.67)

Это звено также называют инерционным звеном первого порядка. Апериодическое звено в отличие от выше рассмотренных звеньев характеризуется двумя параметрами: постоянной времени T и передаточным коэффициентом k .

. (4.68)

Умножив числитель и знаменатель на комплексно-сопряженное знаменателю выражение, получим

,
. (4.69)

Амплитудную и фазовую частотные функции можно определить, используя правило модулей и аргументов.

Так как модуль числителя частотной передаточной функции (4.68) равен k , а модуль знаменателя
,то

(4.70)

Аргумент числителя
равен нулю, а аргумент знаменателя
. Поэтому

Решив дифференциальное уравнение (4.66) при
и нулевом начальном условии
, получим переходную характеристику
. Весовая функция или импульсная переходная характеристика

.

АФЧХ апериодического эвена (рис. 4.8а) есть полуокружность, в чем не трудно убедиться, исключив из параметрических уравнений (4.69) АФЧХ частоту
.

ЛАЧХ представлена на рис 4.8б. На практике обычно ограничиваются построением так называемой асимптотической ЛАЧХ (ломаная линия на том же рис 4.86). В критических случаях, когда небольшая погрешность может повлиять на выводы о состоянии исследуемой системы, рассматривают точную ЛАЧХ. Впрочем, точную ЛАЧХ можно легко построить по асимптотической ЛАЧХ, если воспользоваться следующей зависимостью (L - разность между асимптотической и точной ЛАЧХ):

T= 0,10 0,25 0,40 0,50 1,0 2,0 2,5 4,0 10,0

L = 0,04 0,25 0,62 0,96 3,0 0,96 0,62 0,25 0,04

Частоту
, при которой пересекаются асимптоты, называют сопрягающей частотой. Точная и асимптотическая ЛАЧХ

Рио.4.8 Характеристики апериодического звена

наиболее сильно отличаются при сопрягающей частоте; отклонение при этой частоте примерно 3 дБ.

Уравнение асимптотической ЛАЧХ имеет вид:


Оно получается из уравнения (4.71), если в нем под корнем при
пренебречь первым слагаемым, а при
- вторым слагаемым.

Согласно полученному уравнению, асимптотическую ЛАЧХ можно строить следующим образом: на уровне
частоты
провести прямую, параллельно оси частот, а далее через точку с координатами
и
- прямую под наклоном - -20 дБ/дек.

По АФЧХ или ЛАЧХ легко определить параметры Т и k аперио­дического звена (рис.4.86).

ЛФЧХ изображена на рис. 4.86. Эта характеристика асимптотически стремится к нулю при
и к
при
. При
фазо- частотная функция принимает значение -
, то есть
. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть получены на основе одной характеристики параллельным сдвигом вдоль оси частот влево или вправо в зависимости от значения постоянной времени T. Поэтому для построения ЛФЧХ апериодического звена можно воспользоваться шаблоном, представленном на рис.4.8г.

Переходная характеристика апериодического звена (рис.4.8в) представляет собой экспоненциальную кривую, по которой можно определить параметры этого звена: передаточный коэффициент k определяется по установившемуся значению
; постоянная времениT равна значению t, соответствующему точке пересечения касательной, построенной на переходной характеристике в начале координат, с ее асимптотой (рис 4.8в).

Форсирующее звено . Форсирующим звеном или форсирующим звеном первого порядка называют звено, которое описывается уравнением

,

или передаточной функцией


.

Это звено, как и апериодическое, характеризуется двумя параметрами: постоянной времени T и передаточным коэффициентом k .

Частотная передаточная функция

.

Остальные частотные и временные функции имеют вид:

,
,
,
,

,
,
.

АФЧХ есть прямая, параллельная мнимой оси и пересекающая действительную ось в точке U = k .(рис. 4.9а). Как и в случае апериодического звена, на практике ограничиваются построением асимптотической ЛАЧХ. Частоту
, соответствующую точке излома этой характеристики, называют сопрягающей частотой. Асимптотическая ЛАЧХ при
параллельна оси частот и пересекает ось ординат при
, а при
имеет наклон +20дБ/дек.

ЛФЧХ форсирующего звена можно получить зеркальным отображением относительно оси частот ЛФЧХ апериодического звена и для ее построения можно воспользоваться тем же шаблоном и номограммой, которые используются для построения последней.

Колебательное, консервативное и апериодическое второго порядка звенья . Звено, которое можно описать уравнением

(4.72)

или в другой форме

где,
,
.

Передаточная функция этого звена


(4.74)

Это звено является колебательным, если
;-консервативным, если

;- апериодическим звеном второго порядка, если
. Коэффициент называют коэффициентом демпфирования.

Колебательное звено
. Частотная передаточная функция этого звена

.

Умножив числитель и знаменатель на комплексно-сопряженное выражение, получим вещественную и мнимую частотные функции колебательного звена:

,

Фазовая частотная функция, как это видно из АФЧХ (рис 4.10б), изменяется монотонно от 0 до -и выражается формулой


(4.75)

ЛФЧХ (рис.410б) при
асимптотически стремится к оси частот, а при
к прямой
. Ее можно построить с помощью шаблона. Но для этого необходимо иметь набор шаблонов, соответствующих различным значениям коэффициента демпфирования.

Амплитудная частотная функция

и логарифмическая амплитудно-частотная функция

Уравнение асимптотической ЛФЧX имеет вид


(4.75)

где
- сопрягающая частота. Асимптотическая ЛАЧХ (рис.4.106) при
параллельна оси частот, а при
имеет наклон- -40 дБ/дек.

Рис. 4.10 .Характеристики колебательного звена

Следует иметь в виду, что асимптотическая ЛАЧХ (рис 4.10б) при малых значениях коэффициента демпфирования довольно сильно отличается от точной ЛАЧХ. Точную ЛАЧХ можно построить по асимптотической ЛАЧХ, воспользовавшись кривыми отклонений точных ЛАЧХ от асимптотических (рис.4.10г). Решив дифференциальное уравнение (4.72) колебательного звена при
и нулевых начальных условиях
найдем переходную функцию.

,

,
,

.

Весовая функция

.

По переходной характеристике (рис.4.10в) можно определить параметры колебательного звена следующим образом.

В следящих системах (рис. 1.14, а) при повороте ведущего вала на некоторый угол приемный вал также поворачивается на этот же угол. Однако приемный вал занимает новое положение не мгновенно, а с некоторым запозданием после окончания переходного процесса. Переходный процесс может быть апериодическим (рис. 2.1, а) и колебательным с затухающими колебаниями (рис. 2.1, б). Возможно, что колебания приемного вала будут незатухающими (рис. 2.1, в) или возрастающими по амплитуде (рис. 2.1, г). Последние два режима являются неустойчивыми.

Каким образом данная система будет отрабатывать то или иное изменение задающего или возмущающего воздействия, т. е. каков характер переходного процесса системы, будет ли система устойчивой или неустойчивой - эти и подобные вопросы рассматриваются в динамике систем, автоматического управления.

2.1. Динамические звенья автоматических систем

Необходимость представления элементов автоматических систем динамическими звеньями. Определение динамического звена

Для определения динамических свойств автоматической системы необходимо иметь ее математическое описание, т. е. математическую модель системы. Для этого следует составить дифференциальные уравнения элементов системы, с помощью которых описываются происходящие в них динамические процессы.

При анализе элементов автоматических систем выясняется, что разнообразные элементы, отличающиеся назначением, конструкцией, принципом действия и физическими процессами, описываются одинаковыми дифференциальными уравнениями, т. е. являются сходными по динамическим свойствам. Например, в электрической цепи и механической системе, несмотря на различную их физическую природу, динамические процессы могут описываться аналогичными дифференциальными уравнениями.

Рис. 2.1. Возможные реакции следящей системы на ступенчатое задающее воздействие.

В теории автоматического управления элементы автоматических систем с точки зрения их динамических свойств представляют с, помощью небольшого числа элементарных динамических звеньев. Под элементарным динамическим звеном понимается математическая модель искусственно выделяемой части системы, характеризуемая нексь торым простейшим алгоритмом (математическим или графическим описанием процесса).

Одним элементарным звеном иногда могут быть представлены несколько элементов системы или наоборот - один элемент может быть представлен в виде нескольких звеньев.

По направлению прохождения воздействия различают вход и выход и соответственно входную и выходную величины звена. Выходная величина звена направленного действия не оказывает влияния на входную величину. Дифференциальные уравнения таких звеньев можно составлять отдельно и независимо от других звеньев. Поскольку в САУ входят различные усилители, обладающие направленным действием, САУ обладает способностью передавать воздействия только в одном направлении. Поэтому уравнение динамики всей системы можно получить из уравнений динамики ее звеньев, исключая промежуточные переменные.

Элементарные динамические звенья являются основой для построения математической модели системы любой сложности.

Классификация и динамические характеристики звеньев

Тип звена определяется алгоритмом, в соответствии с которым происходит преобразование входного воздействия. В зависимости от алгоритма различают следующие типы элементарных динамических звеньев: пропорциональное (усилительное), апериодическое (инерционное), колебательное, интегрирующее и дифференцирующее.

Каждое звено характеризуется следующими динамическими характеристиками: уравнением динамики (движения), передаточной функцией, переходной и импульсной переходной (весовой) функциями, частотными характеристиками. Такими же динамическими характеристиками оцениваются и свойства автоматической системы. Рассмотрим динамические характеристики на примере апериодического звена,

Рис. 2.2. Электрическая -цепь, представляемая апериодическим звеном, и реакции звена на типовые входные воздействия: а - схема; б - единичное ступенчатое воздействие; в - переходная функция звена; - единичный импульс; д - импульсная переходная функция звена.

которым представляется электрическая цепь, изображенная на рис. 2.2, а.

Уравнение динамики звена (системы). Уравнение динамики элемента (звена) - уравнение, определяющее зависимость выходной величины элемента (звена) от входной величины

Уравнение динамики можно записать в дифференциальной и операционной формах. Для получения дифференциального уравнения элемента составляются дифференциальные уравнения для входной и выходной величин этого элемента. Применительно к электрической цепи (рис. 2.2, а):

Дифференциальное уравнение цепи получают из этих уравнений исключением промежуточной переменной

где - постоянная времени, с; - коэффициент усиления звена.

В теории автоматического управления принята следующая форма записи уравнения: выходная величина и ее производные находятся в левой части, причем на первом месте стоит производная высшего порядка; выходная величина входит в уравнение с коэффициентом, равным единице; входная величина, а также в более общем случае ее производные и другие члены (возмущения) стоят в правой части уравнения. Уравнение (2.1) записано в соответствии с этой формой.

Элемент системы, процесс в котором описывается уравнением вида (2.1), представляется апериодическим звеном (инерционным, статическим звеном первого порядка).

Для получения уравнения динамики в операционной (по Лапласу) форме функции, входящие в дифференциальное уравнение, заменяются преобразованными по Лапласу функциями, а операции дифференцирования

и интегрирования в случае нулевых начальных условий - умножением и делением на комплексную переменную изображений функций, от которых берется производная или интеграл. В результате этого осуществляется переход от дифференциального уравнения к алгебраическому. В соответствии с дифференциальным уравнением (2.1) уравнение динамики апериодического звена в операционной форме для случая нулевых начальных условий имеет вид:

где - изображение по Лапласу функции времени - комплексное число.

Не следует путать операционную форму (2.2) записи уравнения с символической формой записи дифференциального уравнения:

где - символ дифференцирования. Отличить символ «дифференцирования от комплексной переменной несложно: после символа дифференцирования стоит оригинал, т. е. функция от а после комплексной переменной - изображение по Лапласу, т.е. функция от

Из формулы (2.1) видно, что апериодическое звено описывается уравнением первого порядка. Другие элементарные звенья описываются уравнениями нулевого, первого и максимум второго порядка.

Передаточная функция звена (системы) представляет собой отношение изображений по Лапласу выходной Хкых и входной величин при нулевых начальных условиях:

Передаточная функция звена (системы) может быть определена из уравнения звена (системы), записанного в операционной форме. Для апериодического звена в соответствии с уравнением (2.2)

Из выражения (2.3) следует

т. е. зная изображение по Лапласу входного воздействия и передаточную функцию звена (системы), можно определить изображение выходной величины этого звена (системы).

Изображение выходной величины апериодического звена в соответствии с выражением (2.4) следующее:

Переходной функцией звена (системы) h(t) называется реакция звена (системы) на воздействие вида единичной ступенчатой функции (рис. 2.2, б) при нулевых начальных условиях. Переходная функция может быть определена решением дифференциального уравнения обычным или операционным методами. Для определения

операционным методом в уравнение (2.5) подставляем изображение единичной ступенчатой функции и находим изображение переходной функции

т. е. изображение переходной функции равно передаточной функции, деленной на Переходная функция находится как обратное преобразование Лапласа от

Для определения апериодического звена в уравнение (2.6) подставляем и находим изображение переходной функции

Разлагаем на алементарные дроби где и с помощью таблиц преобразования Лапласа находим оригинал

График переходной функции апериодического звена изображен на рис. 2.2, в. Из рисунка видно, что переходный процесс звена имеет апериодический характер. Выходная величина звена достигает своего значения не сразу, а постепенно. В частности, значение достигается через .

Импульсная переходная функция (весовая функция) звена (системы) есть реакция звена (системы) на единичный импульс (мгновенный импульс с бесконечно большой амплитудой и единичной площадью, рис. 2.2, г). Единичный импульс получается дифференцированием единичного скачка: или в операционной форме: Поэтому

т. е. изображение импульсной переходной функции равно передаточной функции звена (системы). Отсюда следует, что для характеристики динамических свойств звена (системы) в равной мере могут быть использованы как передаточная функция, так и импульсная переходная функция. Как видно из (2.8), чтобы получить импульсную переходную функцию, надо найти оригинал, соответствующий передаточной функции Импульсная переходная функция апериодического звена

В соответствии с (2.7) или при переходе к оригиналам импульсная переходная функция звена (системы) может быть также получена дифференцированием переходной функции. Импульсная переходная функция апериодического

(кликните для просмотра скана)

Рис. 2.3. Принципиальные схемы элементов, представляемых пропорциональным звеном: а - делитель напряжения; б - потенциометр; в - усилитель на транзисторе; г - редуктор.

Как видим, выражения (2.9) и (2.10) для совпадают. График импульсной переходной функции апериодического звена изображен на рис. 2.2, д.

Из выражения (2.5) и рассмотренных примеров следует, что при заданном входном воздействии выходная величина определяется передаточной функцией. Поэтому технические требования к выходной величине звена (системы) можно выразить через соответствующие требования к передаточной функции этого звена (системы). В теории автоматического управления метод исследования и проектирования систем с помощью передаточной функции является одним из основных методов.

Пропорциональное (усилительное) звено. Уравнение звена имеет вид:

т. е. между выходной и входной величинами звена имеется пропорциональная зависимость. Уравнение (2.11) в операционной форме

Из уравнения (2.12) определяется передаточная функция звена

т. е. передаточная функция пропорционального звена численно равна коэффициенту усиления. Примерами такого звена могут служить делитель напряжения, потенциометрический датчик, электронный усилительный каскад, идеальный редуктор, схемы которых изображены на рис. 2.3, а, б, е, г соответственно. Коэффициент усиления пропорционального звена может быть как безразмерной (делитель напряжения, усилительный каскад, редуктор), так и размерной величиной (потенциометрический датчик).

Оценим динамические свойства пропорционального звена. При подаче на вход звена ступенчатой функции выходная величина (переходная функция) в силу равенства (2.11) также будет ступенчатой (табл. 2.1), т. е. выходная величина копирует изменение входной

величины без запаздывания и искажения. Поэтому пропорциональное звено называют еще безынерционным.

Импульсная переходная функция пропорционального звена

т. e. представляет собой мгновенный бесконечно большой амплитуды импульс, площадь которого

Колебательное звено. Уравнение звена:

или в операционной форме

Тогда передаточная функция колебательного звена имеет вид

Динамические свойства звена зависят от корней его характеристического уравнения

Свободная составляющая решения

Полное решение уравнения (2.14) при ступенчатом входном воздействии (переходная функция звена) имеет вид:

где - угловая частота собственных колебаний; - начальная фаза колебаний; - декремент затухания; - относительный коэффициент затухания.

Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х( t ) , и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у( t ) . Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

    пропорциональное звено;

    апериодическое звено I-ого порядка;

    апериодическое звено II-ого порядка;

    колебательное звено;

    интегрирующее звено;

    идеальное дифференцирующее звено;

    форсирующее звено I-ого порядка;

    форсирующее звено II-ого порядка;

    звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным .

1. Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W (s ) = K где К – коэффициент усиления.

Пропорциональное звено описывается алгебраическим уравнением:

у(t ) = K · х(t )

Примерами таких пропорциональных звеньев могут служить, рычажный механизм, жесткая механическая передача, редуктор, электронный усилитель сигналов на низких частотах, делитель напряжения и др.



4. Переходная функция .

Переходная функция пропорциональное звена имеет вид:

h(t) = L -1 = L -1 = K · 1(t)

5. Весовая функция.

Весовая функция пропорционального звена равна:

w(t) = L -1 = K ·δ(t)



Рис. 3.5. Переходная функция, весовая функция, АФЧХ и АЧХ пропорционального звена.

6. Частотные характеристики .

Найдем АФЧХ, АЧХ, ФЧХ и ЛАХ пропорционального звена:

W(j ω ) = K = K +0 ·j

A(ω ) =
= K

φ(ω) = arctg(0/K) = 0

L(ω) = 20·lg = 20·lg(K)

Как следует из представленных результатов, амплитуда выходного сигнала не зависит от частоты. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥, как правило на высоких частотах, коэффициент усиления становится меньше и стремиться к нулю при ω → ∞. Таким образом, математическая модель пропорционального звена является некоторой идеализацией реальных звеньев .

Апериодическое звено I -ого порядка

Апериодические звенья иначе еще называются инерционными .

1. Передаточная функция.

Передаточная функция апериодического звена I-ого порядка имеет вид:

W (s ) = K /(T · s + 1)

где K – коэффициент усиления; T – постоянная времени, характеризующая инерционность системы, т.е. продолжительность переходного процесса в ней. Поскольку постоянная времени характеризует некоторый временной интервал , то ее величина должна быть всегда положительной, т.е. (T > 0).

2. Математическое описание звена.

Апериодическое звено I-ого порядка описывается дифференциальным уравнением первого порядка:

T · d у(t )/ dt + у(t ) = K ·х(t )

3. Физическая реализация звена.

Примерами апериодического звена I-ого порядка могут служить: электрический RC-фильтр; термоэлектрический преобразователь; резервуар с сжатым газом и т.п.

4. Переходная функция .

Переходная функция апериодического звена I-ого порядка имеет вид:

h(t) = L -1 = L -1 = K – K·e -t/T = K·(1 – e -t/T )


Рис. 3.6. Переходная характеристика апериодического звена I-го порядка.

Переходный процесс апериодического звена I-ого порядка имеет экспоненциальный вид. Установившееся значение равно: h уст = K. Касательная в точке t = 0 пересекает линию установившегося значения в точке t = T. В момент времени t = T переходная функция принимает значение: h(T) ≈ 0.632·K, т.е. за время T переходная характеристика набирает только около 63% от установившегося значения.

Определим время регулирования T у для апериодического звена I-ого порядка. Как известно из предыдущей лекции, время регулирования – это время, после которого разница между текущим и установившимся значениями не будет превышать некоторой заданной малой величины Δ. (Как правило, Δ задается как 5 % от установившегося значения).

h(T у) = (1 – Δ)·h уст = (1 – Δ)·K = K·(1 – e - T у/ T), отсюда е - T у/ T = Δ, тогда T у /T = -ln(Δ), В итоге получаем T у = [-ln(Δ)]·T.

При Δ = 0,05 T у = - ln(0.05)·T ≈ 3·T.

Другими словами, время переходного процесса апериодического звена I-ого порядка приблизительно в 3 раза превышает постоянную времени.

Loading...Loading...