Применение керамики кратко. Керамические материалы в строительстве. Участок по приготовлению глазури

1. Общие сведения

Керамическими называют искусственные каменные материалы и изделия, полученные в процессе технологической обработки минерального сырья и последующего обжига при высоких температурах.

Название "керамика" происходит от греческого слова "keramos" - глина.

Поэтому под технологией керамики всегда подразумевали производство материалов и изделий из глинистого сырья и смесей его с органическими и минеральными добавками.

Материал, из которого состоят керамические изделия после обжига, в технологии керамики называют керамическим черепком .

Глины всегда в истории человечества были и являются одним из основных видов строительных материалов.

Вначале - 8000 лет до н.э. - глины применялись в необожженном виде для глинобитного строительства и изготовления саманного и сырцового кирпича. 3500 лет до н.э. отмечается начало применения керамического кирпича, а 1000 лет до н.э. - глазурованного кирпича и черепицы.

С середины первого тысячелетия в Китае начинается производство изделий из фарфора.

В России первый кирпичный завод был построен в Москве в 1475 г., а в 1744 году в Петербурге начал работать первый фарфоровый завод. В конце XVIII - середине XIX в. бурное развитие металлургической, химической и электротехнической промышленности привело к развитию производства огнеупорной, кислотоупорной, электроизоляционной керамики и плиток для полов

С начала текущего столетия получило развитие производство эффективного кирпича и пустотелых камней для возведения стен и перекрытий, а также керамических плиток для внутренней и наружной отделки и санитарно-технических изделий.

В последнее время получило распространение производство специальной керамики с уникальными свойствами для нужд ядерной энергетики, машиностроения, электронной, ракетной и других отраслей промышленности.

Большой практический интерес имеют керметы, состоящие из металлической и керамической частей.

В понятие керамические материалы и изделия входит широкий круг материалов с различными свойствами.

Их классифицируют по ряду признаков :
- по назначению керамические изделия подразделяют на следующие виды: стеновые, отделочные, кровельные, для полов, для перекрытий, дорожные, санитарно-технические, кислотоупорные, теплоизоляционные, огнеупорные и заполнители для бетонов;

По структуре различают керамические изделия с пористым и спекшимся (плотным) черепком. Пористыми считают изделия с водопоглощением по массе более 5%. К ним относятся изделия как грубой (керамические стеновые кирпич и камень, изделия для кровли и перекрытий, дренажные трубы), так и тонкой (облицовочные плитки, фаянсовые) керамики. К плотным относят изделия с водопоглощением по массе менее 5%. К ним принадлежат также изделия и грубой (клинкерный кирпич, крупноразмерные облицовочные плиты), и тонкой (фаянс, полуфарфор, фарфор) керамики;

По температуре плавления керамические материалы и изделия подразделяются на легкоплавкие (с температурой плавления ниже 1350 °С), тугоплавкие (с температурой плавления 1350 °С-1580 °С), огнеупорные (1580 °С-2000 °С), высшей огнеупорности (более 2000 °С).

Возможность получения любых заданных свойств, широкая номенклатура, большие запасы повсеместно распространенного сырья, сравнительная простота технологии, высокая долговечность и экологическая безвредность керамических материалов обеспечивают им одно их первых мест по значимости и объемам производства среди других строительных материалов.

Так выпуск керамического кирпича составляет около половины объема всех стеновых материалов.

2. Сырье для производства керамических материалов

Основным сырьевым материалом для производства строительных керамических изделий является глинистое сырье, применяемое в чистом виде, а чаще в смеси с добавками - отощающими, породообразующими, плавнями, пластификаторами и др.

Глинистое сырье

Глинистое сырье (глины и каолины) - продукт выветривания изверженных полевошпатных горных пород, содержащий примеси других горных пород.

Глинистые минеральные частицы диаметром 0,005 мм и менее обеспечивают способность при затворении водой образовывать пластичное тесто, сохраняющее при высыхании приданную форму, а после обжига приобретающее водостойкость и прочность камня.

Помимо глинистых частиц в составе сырья имеется определенное содержание пылевидных частиц с размерами зерен 0,005-0,16 мм и песчаных частиц с размерами зерен 0,16-2 мм.

Глинистые частицы имеют пластинчатую форму, между которыми при смачивании образуются тонкие слои воды, вызывая набухание частиц и способность их к скольжению относительно друг друга без потери связности. Поэтому глина, смешанная с водой, дает легко формуемую пластичную массу.

При сушке глиняное тесто теряет воду и уменьшается по объему. Этот процесс называется воздушной усадкой.

Чем больше в глинистом сырье глинистых частиц, тем выше пластичность и воздушная усадка глин. В зависимости от этого глины подразделяются на высокопластичные, среднепластичные, умеренно-пластичные, малопластичные и непластичные

Высокопластичные глины имеют в своем составе до 80-90% глинистых частиц, число пластичности более 25, водопотребность более 28% и воздушную усадку 10-15%. Средне- и умеренно-пластичные глины имеют в своем составе 30-60% глинистых частиц, число пластичности 15-25, водопотребность 20-28% и воздушную усадку 7-10%.

Малопластичные глины имеют в своем составе от 5% до 30% глинистых частиц, водопотребность менее 20%, число пластичности 7-15 и воздушную усадку 5-7%.

Непластичные глины не образуют пластичное удобоформуемое тесто.

Глины с содержанием глинистых частиц более 60% называют "жирными", отличаются высокой усадкой, для снижения которой в глины добавляют "отощающие" добавки.

Глины с содержанием глинистых частиц менее 10-15%*- "тощие" глины, в них при производстве изделий вводят тонкодисперсные добавки, например, бентонитовую глину.

Различное сочетание химического, минералогического и гранулометрического состава компонентов обуславливает различные свойства глинистого сырья и пригодность его для получения керамических изделий тех или иных свойств и назначения.

Гранулометрический состав глин тесно связан с минералогическим составом.

Песчаные и пылевидные фракции представлены главным образом в виде остатков первичных минералов (кварца, полевого шпата, слюды и др.).

Глинистые частицы в большинстве своем состоят из вторичных минералов: каолинита, монтмориллонита, гидрослюдистых и их смесей в различных сочетаниях.

Глины с преобладающим содержанием каолинита имеют светлую окраску, слабо набухают при взаимодействии с водой, характеризуются тугоплавкостью, малопластичны и малочувствительны к сушке.

Глины, содержащие монтмориллонит, весьма пластичны, сильно набухают, при формовке склонны к свилеобразованию, чувствительны к сушке и обжигу с проявлением искривления изделий и растрескивания.

Высокодисперсные глинистые породы с преобладающим содержанием монтмориллонита называют бентонитами.

Образцы с преобладанием в глинистой части гидрослюдистых минералов характеризуются промежуточными показателями пластичности, усадки и чувствительности к сушке.

Химический состав глин выражается содержанием и соотношением различных оксидов.

Присутствие оксидов железа снижает огнеупорность глин, тонкодисперсного известняка придает светлую окраску и понижает огнеупорность глин, а камневидные включения его являются причинами появления "дутикон" и трещин в керамических изделиях

Оксиды щелочных металлом являются сильными плавнями, способствуют повышению усадки, уплотнению черепка и повышению его прочности. Наличие в глинистом сырье растворимых солей сульфатов и хлоридов натрия, кальция, магния и железа вызывает появление белых выцветов на поверхности изделий.

Для изготовления отдельных видов огнеупорных теплоизоляционных изделий применяют глинистое сырье из трепелов и диатомитов, состоящие в основном из аморфного кремнезема, а для производства легких заполнителей используют перлит, пемзу, вермикулит.

В настоящее время природные глины в чистом виде редко являются кондиционным сырьем для производства керамических изделий. В связи с этим их применяют с введением добавок различного назначения.

Добавки к глинам

Отощающие добавки . Их вводят в пластичные глины дни уменьшения усадки при сушке и обжиге и предотвращения деформаций и трещин в изделиях. К ним относятся: дегидратированная глина, шамот, шлаки, золы, кварцевый песок.

Порообразующие добавки . Их вводят для повышения пористости черепка и улучшения теплоизоляционных свойств керамических изделий. К ним относятся: древесные опилки, угольный порошок, торфяная пыль. Эти добавки являются одновременно и отощающими.

Плавни . Их вводят с целью снижения температуры обжига керамических изделий. К ним относятся: полевые пшаты, железная руда, доломит, магнезит, тальк, песчаник, пегматит, стеклобой, перлит.

Пластифицирующие добавки. Их вводят с целью повышения пластичности сырьевых смесей при меньшем расходе воды. К ним относятся высокопластичные глины, бентониты, поверхностно-активные вещества.

Специальные добавки. Для повышения кислотостойкости керамических изделий в сырьевые смеси добавляют песчаные смеси, затворенные жидким стеклом. Для получения некоторых видов цветной керамики в сырьевую смесь добавляют оксиды металлов (железа, кобальта, хрома, титана и др.).

Глазури и ангобы

Некоторые виды керамических изделий для повышения санитарно-гигиенических свойств, водонепроницаемости, улучшения внешнего вида покрывают декоративным слоем - глазурью или ангобом.

Глазурь - стекловидное покрытие толщиной 0,1-0,2 мм, нанесенное на изделие и закрепленное обжигом. Глазури могут быть прозрачными и глухими (непрозрачными) различного цвета.

Для изготовления глазури используют: кварцевый песок, каолин, полевой шпат, соли щелочных и щелочноземельных металлов. Сырьевые смеси размалывают в порошок и наносят на поверхность изделий в виде порошка или суспензии перед обжигом.

Ангобом называется нанесенный на изделие тонкий слой беложгущейся или цветной глины, образующей цветное покрытие с матовой поверхностью. По свойствам ангоб должен быть близок к основному черепку.

3. Схема производства керамических изделий

При всем многообразии керамических изделий по свойствам, формам, назначению, виду сырья и технологии изготовления основные этапы производства керамических изделий являются общими и состоят из следующих операций: добыча сырьевых материалов, подготовка массы, формование изделий, их сушка и обжиг.

Добыча глины осуществляется на карьерах обычно открытым способом экскаваторами и транспортируется на предприятие керамических изделий рельсовым, автомобильным или другим видом транспорта.

Разработке карьера предшествуют подготовительные работы: геологическая разведка с установлением характера залегания, полезной толщи и запасов глин; счистка поверхности от растений за год-два до начала разработки, удаление пород, непригодных для производства.

Подготовка глин и формование изделий

Карьерная глина в естественном состоянии обычно непригодна для получения керамических изделий. Поэтому проводится ее обработка с целью подготовки массы.

Подготовку глин целесообразно вести сочетанием естественной и механической обработки.

Естественная обработка подразумевает собой вылеживание предварительно добытой глины в течение 1-2 лет при периодическом увлажнении атмосферными осадками или искусственном замачивании и периодическом замораживании и оттаивании.

Механическая обработка глин производится с целью дальнейшего разрушения их природной структуры, удаления или измельчения крупных включений, удаления вредных примесей, измельчения глин и добавок и перемешивания всех компонентов до получения однородной и удобоформуемой массы с использованием специализированных машин (глинорыхлителей; камневыделительных, дырчатых, дезинтеграторных, грубого и тонкого помола вальцов; бегунов, глинорастирочных машин, корзинчатых дезинтеграторов, роторных и шаровых мельниц, одно- и двухвальных глиномешалок, пропеллерных мешалок и др.).

В зависимости от вида изготовляемой продукции, вида и свойств сырья массу приготовляют пластическим, жестким, полусухим, сухим и шликерным способами. Способ приготовления массы определяет и способ формования и название в целом способа производства

При пластическом способе подготовки массы и формования исходные материалы при естественной влажности или предварительно высушенные смешивают с добавками воды до получения теста с влажностью от 18 до 28%.

Этот способ производства керамических строительных материалов является наиболее простым, наименее металлоемким и потому наиболее распространенным.

Он применяется в случаях использования среднепластичных и умеренно-пластичных, рыхлых и влажных глин с умеренным содержанием посторонних включений, хорошо размокающих и превращающихся в однородную массу.



Технологическая схема производства керамического кирпича:

1 - карьер глины; 2 - экскаватор; 3 - глинозапасник; 4 - вагонетка; 5 - ящичный подаватель; 6 - добавки; 7 - бегуны; 8 - вальцы; 9 -ленточный пресс; 10 - резак; 11 - укладчик; 12 - тележка; 13 - сушильные камеры; 14 - туннельная печь; 15 - самоходная тележка; 16 - склад

Набор и разновидности машин для подготовки массы могут отличаться от приведенных на рис.1 в зависимости от свойств сырья и добавок.

Однако формование при пластическом способе всегда производится на машине одного принципа действия - ленточном шнековом прессе с вакуумированием и подогревом или без них.

Вакуумирование и подогрев массы при прессовании позволяет улучшить ее формовочные свойства, увеличить прочность обоженного изделия до 2-х раз.

В корпусе пресса вращается шнек-вал с винтовыми лопастями. Глиняная масса перемещается с помощью шнека к сужающейся переходной головке, уплотняется и выдавливается через мундштук в виде непрерывного бруса или ленты, или трубы под давлением 1,6-7 МПа.



Ленточный вакуумный пресс:

1 - шнековый вал; 2 - прессовая головка; 3 - мундштук; 4 - глиняный брус; 5 - крыльчатка; 6 - вакуум-камера; 7 - решетка; 8 - глиномялка

Производительность современных ленточных прессов по производству кирпича достигает 10000 штук в час.

Жесткий способ формования является разновидностью современного развития пластического способа.

Влажность формуемой массы при этом способе колеблется от 13% до 18%. Формование осуществляется на мощных вакуумных шнековых или гидравлических прессах. Вакуум-пресс итальянской фирмы "Бонджени", например, создает давление прессования до 20 МПа.

В связи с тем, что "жесткое" формование осуществляется при относительно высоких 10-20 МПа давлениях, могут быть использованы менее пластичные и с естественной низкой влажностью глины.

При этом способе требуются меньшие энергетические затраты на сушку, а получение изделия сырца с повышенной прочностью позволяет избежать некоторые операции в технологии производства, обязательные при пластическом способе.

Формование при пластическом и жестком способах завершается разрезкой непрерывной ленты отформованной массы на отдельные изделия на резательных устройствах.

Эти способы формования наиболее распространены при выпуске: сплошных и пустотелых кирпичей, камней, блоков и панелей; черепицы и т.п.

Полусухой способ производства строительных керамических изделий распространен меньше, чем способ пластического формования. Керамические изделия по этому способу формуют из шихты с влажностью 8-12% при давлениях 15-40 МПа.

Недостаток способа в том, что его металлоемкость почти в 3 раза выше, чем пластического.

Но вместе с тем он имеет и преимущества.

Длительность производственного цикла сокращается почти в 2 раза; изделия имеют более правильную форму и более точные размеры; до 30% сокращается расход топлива; в производстве можно использовать малопластичные тощие глины с большим количеством добавок отходов производства - золы, шлаков и др.

Сырьевая масса представляет собой порошок, который должен иметь около 50% частиц менее 1 мм и 50% размером 1-3 мм.

Прессование изделий производится в прессформах на одно или несколько отдельных изделий на гидравлических или механических прессах. По этому способу делаются все виды изделий, которые изготовляются и пластическим способом.

Сухой способ является разновидностью современного развития полусухого производства керамических изделий. Пресс-порошок при этом способе готовится с влажностью 2-6%.

При этом устраняется полностью необходимость операции сушки. Таким способом изготовляют плотные керамические изделия-плитки для полов, дорожный кирпич, материалы из фаянса и фарфора.

Шликерный способ применяется, когда изделия изготавливаются из многокомпонентной массы, состоящей из неоднородных и трудноспекающихся глин и добавок, и когда требуется подготовить массу для изготовления керамических изделий сложной формы методом литья.

Отливка изделий производится из массы с содержанием воды до 40%. Этим способом изготовляются санитарно-технические изделия, облицовочные плитки.

Сушка изделий

Перед обжигом изделия должны быть высушены до содержания влаги 5-6% во избежание неравномерной усадки, искривлений и растрескивания при обжиге.

Прежде сырец сушили преимущественно в естественных условиях в сушильных сараях в течение 2-3 недель в зависимости от климатических условий.

В настоящее время сушка производится преимущественно искусственная в туннельных непрерывного действия или камерных периодического действия сушилах в течение от нескольких до 72-х часов в зависимости от свойств сырья и влажности сырца

Сушка производится при начальной температуре теплоносителя - отходящих газов от обжиговых печей или подогретого воздуха -120-150 °С.

Обжиг изделий

Обжиг - важнейший и завершающий процесс в производстве керамических изделий. Этот процесс можно разделить на три периода: прогрев сырца, собственно обжиг и регулируемое охлаждение.

При нагреве сырца до 120 °С удаляется физически связанная вода и керамическая масса становится непластичной. Но если добавить воду, пластические свойства массы сохраняются.

В температурном интервале от 450 °С до 600 °С происходит отделение химически связанной воды, разрушение глинистых минералов и глина переходит в аморфное состояние.

При этом и при дальнейшем повышении температуры выгорают органические примеси и добавки, а керамическая масса безвозвратно теряет свои пластические свойства.

При 800 °С начинается повышение прочности изделий, благодаря протеканию реакций в твердой фазе на границах поверхностей частиц компонентов.

В процессе нагрева до 1000 °С возможно образование новых кристаллических силикатов, например силлиманита, а при нагреве до 1200 °С и муллита.

Одновременно с этим легкоплавкие соединения керамической массы и минералы плавни создают некоторое количество расплава, который обволакивает не расплавившиеся частицы, стягивает их, приводя к уплотнению и усадке массы в целом.

Эта усадка называется огневой усадкой.

В зависимости от вида глин она составляет от 2% до 8%. После остывания изделие приобретает камневидное состояние, водостойкость и прочность. Свойство глин уплотняться при обжиге и образовывать камнеподобный черепок называется спекаемостью глин .

В зависимости от назначения обжиг изделий ведется до различной степени спекания. Спекшимся считается черепок с водопоглощением менее 5%. Большинство строительных изделий обжигается до получения черепка с неполным спеканием в определенном температурном интервале от температуры огнеупорности до начала спекания, называемым интервалом спекания.

Интервал спекания для легкоплавких глин составляет 50-100 °С, а огнеупорных до 400 °С. Чем шире интервал спекания, тем меньше опасность деформаций и растрескивания изделий при обжиге.

Интервал температур обжига лежит в пределах: от 900 °С до 1100 °С для кирпича, камня, керамзита; от 1100 °С до 1300 °С для клинкерного кирпича, плиток для полов, гончарных изделий, фаянса; от 1300 °С до 1450 °С для фарфоровых изделий; от 1300 °С до 1800 °С для огнеупорной керамики.

4. Структура и свойства керамических изделий

Керамические материалы представляют собой композиционные материалы, в которых матрица или непрерывная фаза представлена остывшим расплавом, а дисперсная фаза представлена нерасплавленными частицами глинистых, пылевидных и песчаных фракций, а также порами и пустотами, заполненными воздухом.

Материал матрицы в свою очередь представляет собой микрокомпозиционный материал, состоящий из матрицы - непрерывной стекловидной фазы застывшего расплава и дисперсной фазы - кристаллических зерен силлиманита, муллита, кремнезема различных фракций и других веществ, кристаллизующихся при остывании (в основном алюмосиликатов).

Стекловидная, аморфная фаза (переохлажденная жидкость) представлена в микроструктуре легкоплавкими компонентами, которые не успели выкристаллизоваться при заданной скорости остывания расплава.

Истинная плотность керамических материалов 2,5 - 2,7 г/см; плотность 2000 - 2300 кг/м; теплопроводность абсолютно плотного черепка 1,16 В/(м °С). Теплоемкость керамических материалов 0,75 - 0,92 кДж/(кг °С).

Предел прочности при сжатии керамических изделий меняется в пределах от 0,05 до 1000 МПа.

Водопоглощение керамических материалов в зависимости от пористости меняется в пределах от 0 до 70%.

Керамические материалы имеют марки по морозостойкости: 15; 25; 35; 50; 75 и 100.

5. Стеновые изделия

К группе стеновых изделий относятся: кирпич керамический обыкновенный, эффективные керамические материалы (кирпич пустотелый, пористо-пустотелый, легкий, пустотелые камни, блоки и плиты), а также крупноразмерные блоки и панели из кирпича и керамических камней.

Керамические кирпичи и камни

Керамические кирпичи и камни изготовляют из легкоплавких глин с добавками или без них и применяются для кладки наружных и внутренних стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков.

В зависимости от размеров кирпич и камни подразделяются на виды :
- обыкновенный;
- утолщенный;
- модульный;
- камень обыкновенный;
- укрупненный;
- модульный;
- с горизонтальным расположением пустот.



Типы керамического кирпича и камня

Кирпич: а) обыкновенный; б) утолщенный; в) модульный. Камень: г) обыкновенный; д) укрупненный; е) модульный; ж), з) с горизонтальным расположением пустот

Кирпич может быть полнотелым и пустотелым, а камни только пустотелыми. Утолщенный и модульный кирпич должен быть также только с круглыми или щелевыми пустотами, чтобы масса одного кирпича не превышала 4 кг.

Поверхность граней может быть гладкой и рифленой.

Кирпич и камень должен быть нормально обожжен, так как недожог (алый цвет) обладает недостаточной прочностью, малой водостойкостью и морозостойкостью, а пережженный кирпич (железняк) отличается повышенной плотностью, теплопроводностью и, как правило, имеет искаженную форму.

Допускается изготовление кирпича и камней с закругленными углами с радиусом закругления до 15 мм. Размер цилиндрических сквозных пустот по наименьшему диаметру должен быть не менее 16 мм, ширина щелевых пустот не более 12 мм. Диаметр несквозных пустот не ограничивается.

Толщина наружных стенок кирпича и камней должна быть не менее 12 мм. По внешнему виду кирпич и камень должны удовлетворять определенным требованиям.

Это устанавливается путем осмотра и обмера определенного количества кирпича от каждой партии (0,5%, но не менее 100 шт.) по отклонениям от установленных размеров, непрямолинейности ребер и граней, отбитости углов и ребер, наличию сквозных трещин, проходящих по постели кирпича.

Общее количество изделий с отклонениями, выше допустимых, должно быть не более 5%.

Марка кирпича в зависимости от пределов прочности при сжатии и изгибе

Марка кирпича

Предел прочности, МПа

Для всех видов кирпичей

при изгибе

при сжатии

для полнотелого кирпича пластического прессования

для полнотелого кирпича полусухого прессования и пустотелого кирпича

для утолщенного кирпича

средний для 5 образцов

min

средний для 5 образцов

min

средний для 5 образцов

min

средний для 5 образцов

min

30,0

25,0

29,0

20,0

20,0

17,5

17,5

15,0

15,0

12,5

10,0

Морозостойкость кирпича и камней 15, 25, 35 и 50. Водопоглощение для полнотелого кирпича должно быть для марок до 150 не менее 8%, а для полнотелого кирпича более высоких марок и пустотелых изделий не менее 6%.

По плотности в сухом состоянии кирпич и камни подразделяются на 3 группы :
- обыкновенные - с плотностью более 1600 кг/м;
- условно-эффективные - с плотностью более 1400-1600 кг/м;
- эффективные - с плотностью не более 1400-1450 кг/м.

К эффективным стеновым материалам относятся также пористые сплошные и пустотелые кирпич и камни, изготовляемые из диатомитов и трепелов и имеющие плотность: класс А - 700-1000 кг/м, класс Б - 1001-1300 кг/м, класс В > 1301 кг/м.

Применение эффективных стеновых керамических материалов позволяет уменьшить толщину наружных стен, снизить материалоемкость ограждающих конструкций до 40%, сократить транспортные расходы и нагрузки на основание.

В различных странах выпускаются отличающиеся между собой стеновые материалы как по номенклатуре, так и по типоразмерам и маркам. Так, марка кирпича, выпускаемого за рубежом, составляет 125-600, причем основная масса кирпича производится с маркой 400

В Германии, например, стандарт "Стеновой кирпич" предусматривает производство: обыкновенных полнотелых и пустотелых кирпичей и камней 14-ти типов с размерами 240x115x52-490x300x238 марок от М40 до М280 и плотностью 1200-2200 кг/м(3); легких пустотелых кирпичей и камней 13-ти типоразмеров марок от М20 до М280 и плотностью 600-1000 кг/м(3); высокопрочных кирпичей и камней марок М360, М480 и М600: для внутренних стен и перегородок - пустотелых кирпичей, камней и плит с размерами 330x175x40-945x320x115.

В зарубежной практике известно производство кирпича пазогребневой конструкции для безрастворной кладки, крупноразмерных керамических стеновых элементов, звукоизоляционного кирпича и других стеновых изделий.

Панели и блоки стеновые из кирпича и керамических камней

Панели и блоки стеновые из кирпича и керамических камней изготовляют для повышения индустриальности строительства.

Их изготовляют обычно в горизонтальном положении в металлической форме с матрицей, имеющей ячейки для фиксации положения каждого кирпича и камня и обеспечивающей расшивку швов с лицевой стороны изделия или с матрицей со специальным рисунком отделочного слоя.

Они изготовляются трех-, двух-, и однослойные длиной на один или два планировочных шага и высотой на 1 и 2 этажа, толщина панелей для внутренних стен и перегородок 80, 140, 180 и 280 мм.

Однослойные панели изготавливаются из керамических камней. Двухслойная панель состоит из одного слоя в 1/2 кирпича и слоя утеплителя толщиной до 100 мм.

Трехслойная панель состоит из двух кирпичных наружных слоев, каждый толщиной 65 мм, и слоя утеплителя толщиной 100 мм между ними. Для обеспечения прочности панели при транспортировании и монтаже их армируют стальными каркасами из проволоки по периметру панели и проемов.

6. Облицовочные изделия

Керамические облицовочные изделия применяются для наружной и внутренней облицовки конструкции зданий и сооружений не только с целью декоративно-художественной отделки, но и повышения их долговечности.

Керамические изделия для внешней облицовки зданий

Керамические изделия для внешней облицовки зданий подразделяют на кирпич и камни лицевые, крупноразмерные плиты, плитки керамические фасадные и ковры из них.

Кирпич и камни лицевые являются не только облицовочными изделиями. Они укладываются вместе с кладкой стены и одновременно служат конструктивным несущим элементом вместе с обычным кирпичом.

Лицевые кирпичи и камни выпускаются тех же размеров и форм, что и обычные, и отличаются от последних более высокой их плотностью и однородностью цвета. Производятся по прочности марок 75, 100, 125 и 150, а по морозостойкости не менее 25

Регулируя состав сырья и режим обжига получают от белого, кремового до светло-красного и коричневого цветов.

При отсутствии высококачественного сырья изготавливаются с лицевой поверхностью офактуренной: ангобированием, двухслойным формованием, глазурованием и торкретированием цветной минеральной крошкой.

Двухслойные изделия изготовляют формованием из двух масс: основной части - местных красножгущихся глин и лицевого слоя толщиной 3-5 мм из светложгущихся окрашенных или неокрашенных глин.

Применяется и рельефное офактуривание, которое производится путем обработки еще влажных сырцовых изделий специальными металлическими ершами, гребенками, рифлеными валиками. Для зданий, возводимых из кирпича, лицевые кирпичи являются наиболее экономичным видом облицовки зданий.

Крупноразмерные облицовочные керамические плиты типа "плинк" универсального назначения выпускаются глазурованные и неглазурованные с гладкой, шероховатой или рифленой, одно-или многоцветной поверхностью.

Плиты имеют водопоглощение менее 1% и морозостойкость 50 циклов и более. Изготовляются квадратной или прямоугольной формы длиной 490, 990, 1190 мм, шириной 490 и 990 мм и толщиной 9-10 мм.

Применяются для облицовки фасадов и цоколей зданий, подземных переходов.

Плитки керамические фасадные и ковры из них выпускаются методом пластического и полусухого прессования.

Применяются для облицовки наружных стен кирпичных зданий, наружных поверхностей железобетонных стеновых панелей, цоколей, подземных переходов и оформления других элементов зданий.

Плитки выпускаются глазурованные и неглазурованные, рядовые и специального назначения с гладкой и рельефной поверхностью 26-ти типов с размерами от 292x192x9 мм до 21x21x4 мм

Стандартом допускается выпуск плиток и других типоразмеров. Водопоглощение рядовых плиток 7-10%, а специальных - не более 5%.

Морозостойкость должна быть для рядовых плиток не менее 35 циклов, а специальных не менее 50 циклов.

Плитки могут поставляться в коврах. Заводы выпускают ковры с наклейкой плиткой их лицевой стороной на крафт-бумагу.

Керамические плитки для внутренней облицовки

Плитки керамические для внутренней облицовки подразделяются на две группы - для облицовки стен и для покрытия полов. Эти изделия не подвергаются в условиях эксплуатации действию отрицательных температур, поэтому требования морозостойкости к ним не предъявляются.

Плитки для облицовки стен применяются двух видов - майоликовые и фаянсовые . Фаянсовые плитки изготовляются из сырьевой смеси каолина, полевого шпата и кварцевого песка, а майоликовые из красножгущихся глин с последующим покрытием глазурью.

Плитки классифицируют : по характеру поверхности - на плоские рельефно-орнаментированные, фактурные; по виду глазурного покрытия - прозрачные и глухие, блестящие и матовые одноцветные и декорированные многоцветными рисунками.

По форме, назначению и характеру кромок плитки производятся следующих видов : квадратные, прямоугольные, фасонные угловые, фасонные карнизные прямые, для отделки внешних и внутренних углов; фасонные плинтусные - прямые, дли отделки внешних и внутренних углов.

Типы керамических плиток для внутренней отделки:

1-5 - квадратные; 6-10 - прямоугольные; 11, 12 - фасонные угловые; 13-16 - фасонные карнизные; 17-20 -фасонные плинтусные

Размеры плиток для внутренней отделки (150200)х(50200)х(58) мм.

Водопоглощение плиток для внутренней отделки до 16%, предел прочности при изгибе - 12 МПа.

Плитки должны выдерживать перепады температур от 125±5 °С до 15-20 °С без появления дефектов.

Плитки керамические для полов-метлахские (н азвание произошло от города Меttlach в Германии, где еще в средние века было налажено их производство) производятся из тугоплавких и огнеупорных глин с добавками и без них

Их применяют для настилки подов в зданиях, к чистоте которых предъявляются высокие требования, где возможны воздействия жиров и других химических реагентов, интенсивное движение, а также в случаях, когда материал для полов служит и декоративным элементом в архитектурном оформлении помещения.

При производстве плитки обжигаются до спекания, вследствие чего имеют водопоглощение не более 4% и высокую износостойкость.

Плитки могут быть квадратными, прямоугольными, четырех-, пяти-, шести- и восьмигранными.

Размеры плиток 16-ти типов (2004)х(17349)х(1013) мм.

По виду лицевой поверхности плитки выпускаются гладкими, с рельефом и тиснением: одноцветные и многоцветные, матовые и глазурованные, с рисунками и без них.

Выпускаются и крупноразмерные универсальные керамические плитки размерами (1200500)х500 мм, которые применяются для облицовки и стен и полов.


Типы керамических плиток для полов:

1 - квадратная; 2 - прямоугольная; 3 - треугольная; 4 - шестигранная; 5 - четырехгранная; 6 - пятигранная; 7 - шестигранная; 8, 9 - фигурные

Для устройства полов применяют и мозаичные плитки квадратной или прямоугольной формы размером 23 и 48 мм при толщине 6-8 мм, собранные в "ковры" на крафт-бумаге размером 398x598 мм.

Мировым лидером в производстве керамической плитки является Италия, которая производит их около 30% мирового производства.

7. Керамические изделия для кровли и перекрытий

Наибольшее применение керамические изделия для кровли и черепицы нашли в западноевропейских странах, в некоторых из них кровля до 100% жилых зданий решается за счет применения черепицы.

Черепица, имея долговечность до 300 лет, по этому показателю значительно превышает любые другие кровельные материалы, а по текстурным качествам и по стоимости не уступает им.

К недостаткам черепицы относятся необходимость большого уклона (не менее 30%) кровли и значительный вес кровли, что требует особой прочности конструкции стропил, и высокая трудоемкость кровельных работ.

Однако высокая долговечность, огнестойкость, устойчивость к атмосферным воздействиям и распространенность сырья делают керамическую черепицу одним из самых эффективных кровельных материалов.

Известна черепица разных типов. По назначению черепицу подразделяют на: рядовую, коньковую, разжелобочную, концевую для замыкания рядов и черепицу специального назначения. Черепица производится из легкоплавких глин.



Разновидности керамической черепицы:

а) пазовая штампованная; б) пазовая ленточная; в) плоская ленточная; г) коньковая; д) голландская; е) желобчатая; ж) татарская

Черепица при монтаже укладывается друг на друга ив связи с этим полезная площадь составляет соответственно у плоской - 50%, у штампованной и ленточной пазовой - 75-85%.

При испытании черепица должна выдерживать не менее 70 кг при расстоянии между опорами у плоской - 180 мм, у ленточной пазовой и штампованной - 300 мм. Вес штампованной и ленточной пазовой, уложенной в кровлю и насыщенной водой, должен быть не более 50 кг/м, а плоской - не более 65 кг/м.

Морозостойкость черепицы должна быть не менее 25 циклов.

Камни и плиты для перекрытий

Перекрытия из пустотелых камней и плит огнестойки, долговечны, обладают хорошими тепло- и звукоизоляционными свойствами.

Для их устройства требуется небольшой расход цемента и стали и не требуется дополнительная засыпка.

Камни керамические для перекрытий по назначению подразделяются для: сборных элементов настилов, часторебристых сборных или монолитных перекрытий, накатов (заполнение между балками). Пустотность керамических камней для перекрытий 50-75%.


Керамические камни для перекрытий:

а) несущие; б) ненесущие

8. Санитарно-технические керамические изделия и трубы

Изделия санитарные керамические - умывальники, унитазы, сливные бачки, биде, писсуары, раковины и другие аналогичные изделия производятся из фарфоровых, полуфарфоровых, фаянсовых и шамотированных масс, которые получают из одинаковых материалов.

Типовые составы масс для производства санитарно-технических изделий (% по массе)

Материалы

Фарфор

Полуфарфор

Фаянс

Каолин

28-30

28-32

32-34

Пластическая бело-жгущаяся глина

20-22

20-22

22-24

Полевой шпат

20-24

10-12

Песок кварцевый

20-22

25-28

26-30

Бой обоженный

6-10

8-12

26-30

Жидкое стекло

0,15-0,30

0,15-0,30

0,15-0,30

Сода

0,07-0,15

0,07-0,15

0,07-0,15

Физико-механические свойства санитарно-технической керамики

Свойства

Фарфор

Полуфарфор

Фаянс

Водопоглощение, %

0,2-0,5

10-12

Плотность, кг/м

2250-2300

2000-2200

1900-1960

Предел прочности при сжатии; МПа

400-500

150-200

Предел прочности при изгибе, МПа

70-80

38-43

15-30

Трубы керамические канализационные применяют для строительства безнапорных сетей канализации, транспортирующих промышленные, бытовые, дождевые, агрессивные и не агрессивные воды.

Трубы изготовляются из пластичных тугоплавких и огнеупорных глин, цилиндрической формы длиной 1000-1500 мм с внутренним диаметром 150-600 мм.

На одном конце имеется раструб для соединения отдельных звеньев трубопровода.

Водопоглощение труб должно быть не более 8%, а кислотостойкость не ниже 93%.

Трубы должны быть водонепроницаемыми и выдерживать внутреннее давление не менее 0,15 МПа.

Трубы керамические дренажные изготовляются из глины с добавками и без них и применяются в мелиоративном строительстве для устройства закрытого дренажа с защитой стыков фильтрующими материалами.

Трубы производятся с цилиндрической, шести- и восьмигранной поверхностью с внутренним диаметром 50-250 мм и длиной 333 мм.

Морозостойкость их не менее 15 циклов, а разрушающая внешняя нагрузка от 3,5 до 5,0 кН в зависимости от диаметра.

Внешняя поверхность труб покрывается глазурью. Вода в трубы поступает через круглые или щелевидные отверстия в стыках, а также через стыки труб.

9. Специальные керамические изделия

К специальным керамическим изделиям относятся кирпич для дымовых труб, клинкерный кирпич и кислотоупорные изделия.

Кирпич для дымовых труб применяется для кладки дымовых труб и обмуровки промышленных труб в случае, если температура нагрева их дымовыми газами не превышает 700 °С.

Кирпич изготовляется марок от 125 до 300.

Размеры кирпича: длина 120 и 250 мм, ширина 120 или 250 мм, толщина 65 или 88 мм.

Кирпич бывает прямоугольный или клинообразный.

Меньшую длину клинообразного кирпича принимают 70, 100, 200 и 225 мм. Водопоглощение кирпича должно быть не менее 6%, а морозостойкость 25, 35 и 50.

Клинкерный кирпич получают обжигом глин до полного спекания, но без остекловывания поверхности, поэтому он отличается от обычного высокими прочностью и морозостойкостью.

Размер кирпича 220x110x65 мм.

В соответствии с пределом прочности при сжатии его разделяют на 3 марки - 1000, 700 и 400, морозостойкость которых соответственно - 100-50 циклов, а водопоглощение - соответственно не более 2-6%.

Клинкерный кирпич называют и дорожным и применяется он для покрытия дорог и мостовых, обмуровки канализационных коллекторов и облицовки набережных.

Применяется он и в химической промышленности как кислотостойкий материал.

Кислотоупорный кирпич применяется для защиты аппаратов и строительных конструкций, работающих в условиях кислых агрессивных сред, и при футеровке дымовых труб, которые служат для отвода дымовых газов, содержащих агрессивные среды.

Кирпич изготовляется высшей и первой категории качества трех классов А, Б и В и четырех форм: прямой, клиновой (торцовый и ребровый), радиальный (поперечный и продольный) и фасонный (слезник).

Размеры кирпича 230x113x65 и 230x113x55 мм.

Свойства кирпича имеют следующие значения : кислотостойкость - (98,5-96)%; прочность при сжатии (60-35) МПа; термическая стойкость (5-25) теплосмен.

Кислотоупорные плитки применяются для футеровки оборудования и защиты строительных конструкций и сооружений, эксплуатируемых в условиях воздействия агрессивных сред.

Плитки производятся высшего и первого сортов 6-ти марок : кислотоупорные фарфоровые - КФ, термокислотоупорные дунитовые - ТКД, термокислотоупорные для гидролизной промышленности - ТКГ, кислотоупорные для строительных конструкций - КС, кислотоупорные шамотные - КШ и термокислотоупорные шамотные - ТКШ.

По форме плитки бывают :
- квадратные плоские;
- квадратные радиальные;
- прямоугольные;
- клиновы;
- спаренные.

С одной стороны плитки имеют ребристую поверхность, обеспечивающую лучшее сцепление с футерируемой конструкцией.

Размеры плиток меняются в пределах: длина и ширина 50-200 мм, толщина 15-50 мм.

Значения свойств плиток в зависимости от сорта и марок колеблются в пределах: водопоглощение - (0,4-8)%; кислотостойкость - (97-99)%; предел прочности при сжатии - (10-150) МПа, а при изгибе - (10-40) МПа; термическая стойкость 2-10 теплосмен; морозостойкость-15-20 циклов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Заключение

Введение

Керамика является третьим наиболее широко используемым промышленностью материалом после металлов и полимеров. Она является наиболее конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах. Большие перспективы открывает использование транспортных двигателей с деталями из керамики, керамических материалов для обработки резанием и оптической керамики для передачи информации. Это позволит снизить расход дорогих и дефицитных металлов: титана и тантала в конденсаторах, вольфрама и кобальта в режущих инструментах, кобальта, хрома и никеля в тепловых двигателях.

Основными разработчиками и производителями керамических материалов являются США и Япония.

Керамические материалы, используемые в технике в качестве технической керамики или высококачественной керамики, должны удовлетворять самым высоким требованиям к свойствам материалов. К таким свойствам относятся:

Предел прочности на изгиб;

Биологическая совместимость;

Стойкость к химическому воздействию;

Плотность и жесткость (модуль Юнга);

Предел прочности при сжатии;

Электроизоляционные свойства;

Диэлектрическая прочность;

Твердость;

Устойчивость к коррозии;

Пригодность для пищевых целей;

Пьезоэлектрические свойства и динамические характеристики;

Термостойкость;

Устойчивость к тепловым ударам и колебаниям температуры;

Металлизация (технология связывания);

Износостойкость;

Коэффициент теплового расширения;

Термоизоляция;

Теплопроводность;

Эти разнообразные свойства позволяют использовать техническую керамику в различных областях применения в автомобильной промышленности, электронной промышленности, медицинских технологиях, энергетике и промышленной экологии, а также в машиностроении и производстве оборудования.

1. Керамическая технология и классификация керамики

Керамическая технология предусматривает следующие основные этапы: получение исходных порошков, консолидацию порошков, т. е. изготовление компактных материалов, их обработку и контроль изделий.

При производстве высококачественной керамики с высокой однородностью структуры используют порошки исходных материалов с размером частиц до 1 мкм. Измельчение производится механическим путем с помощью мелющих тел, а также путем распыления измельчаемого материала в жидком состоянии, осаждением на холодных поверхностях из парогазовой фазы, виброкавитационным воздействием на частицы, находящиеся в жидкости, с помощью самораспространяющегося высокотемпературного синтеза и другими методами. Для сверхтонкого помола (частицы менее 1 мкм) наиболее перспективны вибрационные мельницы, или аттриторы.

Консолидация керамических материалов состоит из процессов формования и спекания. Различают следующие основные группы методов формования:

1) Прессование под действием сжимающего давления, при котором происходит уплотнение порошка за счет уменьшения пористости;

2) Пластичное формование выдавливанием прутков и труб через мундштук (экструзия) формовочных масс с пластификаторами, увеличивающими их текучесть;

3) Шликерное литье для изготовления тонкостенных изделий любой сложной формы, в котором для формования используют жидкие суспензии порошков.

При переходе от прессования к пластичному формованию и шликерному литью увеличиваются возможности изготовления изделий сложной формы, однако усложняется процесс сушки изделий и удаления пластификаторов из керамического материала. Поэтому для изготовления изделий сравнительно простой формы предпочтение отдается прессованию, а более сложной - экструзии и шликерному литью.

При спекании отдельные частицы порошков превращаются в монолит и формируются окончательные свойства керамики. Процесс спекания сопровождается уменьшением пористости и усадкой.

В таблице 1 приведена классификация основных видов керамики.

Применяют печи для спекания при атмосферном давлении, установки горячего изостатического прессования (газостаты), прессы горячего прессования с усилием прессования до 1500 кН. Температура спекания в зависимости от состава может составлять до 2000 - 2200°С.

Часто применяются совмещенные методы консолидации, сочетающие формование со спеканием, а в некоторых случаях - синтез образующегося соединения с одновременным формованием и спеканием.

Обработка керамики и контроль являются основными составляющими в балансе стоимости керамических изделий. По некоторым данным, стоимость исходных материалов и консолидации составляет всего лишь 11 % (для металлов 43 %), в то время как на обработку приходится 38 % (для металлов 43 %), а на контроль 51 % (для металлов 14 %). К основным методам обработки керамики относятся термообработка и размерная обработка поверхности. Термообработка керамики производится с целью кристаллизации межзеренной стеклофазы. При этом на 20 - 30 % повышаются твердость и вязкость разрушения материала.

Большинство керамических материалов с трудом поддается механической обработке. Поэтому основным условием керамической технологии является получение при консолидации практически готовых изделий. Для доводки поверхностей керамических изделий применяют абразивную обработку алмазными кругами, электрохимическую, ультразвуковую и лазерную обработку. Эффективно применение защитных покрытий, позволяющих залечить мельчайшие поверхностные дефекты - неровности, риски и т. д.

Для контроля керамических деталей чаще всего используют рентгеновскую и ультразвуковую дефектоскопию.

Прочность химических межатомных связей, благодаря которой керамические материалы обладают высокой твердостью, химической и термической стойкостью, одновременно обусловливает их низкую способность к пластической деформации и склонность к хрупкому разрушению. Большинство керамических материалов имеет низкую вязкость и пластичность и соответственно низкую трещиностойкость. Вязкость разрушения кристаллической керамики составляет около 1 - 2 МПа/м 1/2 , в то время как для металлов она составляет более 40 МПа/м 1/2 .

Возможны два подхода к повышению вязкости разрушения керамических материалов. Один из них традиционный, связанный с совершенствованием способов измельчения и очистки порошков, их уплотнения и спекания. Второй подход состоит в торможении роста трещин под нагрузкой. Существует несколько способов решения этой проблемы. Один из них основан на том, что в некоторых керамических материалах, например в диоксиде циркония ZrO 2 , под давлением происходит перестройка кристаллической структуры. Исходная тетрагональная структура ZrO 2 переходит в моноклинную, имеющую на 3 - 5 % больший объем. Расширяясь, зерна ZrO 2 сжимают трещину, и она теряет способность к распространению (рисунок 1, а). При этом сопротивление хрупкому разрушению возрастает до 15 МПа/м 1/2 .

Рисунок 1 - Схема упрочнения конструкционной керамики включениями ZrO 2 (а), волокнами (б) и мелкими трещинами (в): 1 - тетрагональный ZrO 2 ; 2 - моноклинный ZrO 2

керамика технический вязкость технология

Второй способ (рисунок 1, б) состоит в создании композиционного материала путем введения в керамику волокон из более прочного керамического материала, например карбида кремния SiC. Развивающаяся трещина на своем пути встречает волокно и дальше не распространяется. Сопротивление разрушению стеклокерамики с волокнами SiC возрастает до 18 - 20 МПа/м 1/2 , существенно приближаясь к соответствующим значениям для металлов.

Третий способ состоит в том, что с помощью специальных технологий весь керамический материал пронизывают микротрещинами (рисунок 1, в). При встрече основной трещины с микротрещиной угол в острие трещины возрастает, происходит затупление трещины и она дальше не распространяется.

Определенный интерес представляет физико-химический способ повышения надежности керамики. Он реализован для одного из наиболее перспективных керамических материалов на основе нитрида кремния Si 3 N 4 . Способ основан на образовании определенного стехиометрического состава твердых растворов оксидов металлов в нитриде кремния, получивших название сиалонов. Примером высокопрочной керамики, образующейся в этой системе, являются сиалоны состава Si 3-х Al x N 4-х O х, где х - число замещенных атомов кремния и азота в нитриде кремния, составляющее от 0 до 2,1. Важным свойством сиалоновой керамики является стойкость к окислению при высоких температурах, значительно более высокая, чем у нитрида кремния.

2. Свойства и применение керамических материалов

Принципиальными недостатками керамики являются ее хрупкость и сложность обработки. Керамические материалы плохо работают в условиях механических или термических ударов, а также при циклических условиях нагружения. Им свойственна высокая чувствительность к надрезам. В то же время керамические материалы обладают высокой жаропрочностью, превосходной коррозионной стойкостью и малой теплопроводностью, что позволяет с успехом использовать их в качестве элементов тепловой защиты.

При температурах выше 1000°С керамика прочнее любых сплавов, в том числе и суперсплавов, а ее сопротивление ползучести и жаропрочность выше.

К основным областям применения керамических материалов относятся:

1) Режущий керамический инструмент - характеризуется высокой твердостью, в том числе при нагреве, износостойкостью, химической инертностью к большинству металлов в процессе резания. По комплексу этих свойств керамика существенно превосходит традиционные режущие материалы - быстрорежущие стали и твердые сплавы (таблица 2).

Высокие свойства режущей керамики позволили существенно повысить скорости механической обработки стали и чугуна (таблица 3).

Для изготовления режущего инструмента широко применяется керамика на основе оксида алюминия с добавками диоксида циркония, карбидов и нитридов титана, а также на основе бескислородных соединений - нитрида бора с кубической решеткой (-BN), обычно называемого кубическим нитридом бора, и нитрида кремния Si 3 N 4 . Режущие элементы на основе кубического нитрида бора в зависимости от технологии получения, выпускаемые под названиями эльбор, боразон , композит 09 и др., имеют твердость, близкую к твердости алмазного инструмента, и сохраняют устойчивость к нагреву на воздухе до 1300 - 1400°С. В отличие от алмазного инструмента кубический нитрид бора химически инертен по отношению к сплавам на основе железа. Его можно использовать для чернового и чистового точения закаленных сталей и чугунов практически любой твердости.

Состав и свойства основных марок режущей керамики приведены в таблице 4.

Режущие керамические пластины используются для оснащения различных фрез, токарных резцов, расточных головок, специального инструмента.

2) Керамические двигатели - из второго закона термодинамики следует, что для повышения КПД любого термодинамического процесса необходимо повышать температуру на входе в энергетическое преобразовательное устройство: КПД = 1 - T 2 /Т 1 , где Т 1 и Т 2 - температуры на входе и выходе энергетического преобразовательного устройства соответственно. Чем выше температура T 1 тем больше КПД. Однако максимально допустимые температуры определяются теплостойкостью материала. Конструкционная керамика допускает применение более высоких температур по сравнению с металлом и поэтому является перспективным материалом для двигателей внутреннего сгорания и газотурбинных двигателей. Помимо более высокого КПД двигателей за счет повышения рабочей температуры преимуществом керамики является низкая плотность и теплопроводность, повышенная термо- и износостойкость. Кроме того, при ее использовании снижаются или отпадают расходы на систему охлаждения.

Вместе с тем следует отметить, что в технологии изготовления керамических двигателей остается ряд нерешенных проблем. К ним прежде всего относятся проблемы обеспечения надежности, стойкости к термическим ударам, разработки методов соединения керамических деталей с металлическими и пластмассовыми. Наиболее эффективно применение керамики для изготовления дизельных адиабатных поршневых двигателей, имеющих керамическую изоляцию, и высокотемпературных газотурбинных двигателей.

Конструкционные материалы адиабатных двигателей должны быть устойчивы в области рабочих температур 1300 - 1500 К, иметь прочность при изгибе не менее 800 МПа и коэффициент интенсивности напряжений не менее 8 МПа*м 1/2 . Этим требованиям в наибольшей мере удовлетворяет керамика на основе диоксида циркония ZrO 2 и нитрида кремния. Наиболее широко работы по керамическим двигателям проводятся в Японии и США. Японская фирма «Isuzu Motors Ltd» освоила изготовление форкамеры и клапанного механизма адиабатного двигателя, «Nissan Motors Ltd» - крыльчатки турбокомпрессора, фирма «Mazda Motors Ltd» - форкамеры и пальца толкателя.

Компания «Cammin Engine» (США) освоила альтернативный вариант двигателя грузовика с плазменными покрытиями из ZrO 2 , нанесенными на днище поршня, внутреннюю поверхность цилиндра, впускные и выпускные каналы. Экономия топлива на 100 км пути составила более 30 %.

Фирма «Isuzu» (Япония) сообщила об успешной разработке керамического двигателя, работающего на бензине и дизельном топливе. Двигатель развивает скорость до 150 км/ч, коэффициент полноты сгорания топлива на 30 - 50% выше, чем у обычных двигателей, а масса на 30 % меньше.

Конструкционной керамике для газотурбинных двигателей в отличие от адиабатного двигателя не требуется низкая теплопроводность. Учитывая, что керамические детали газотурбинных двигателей работают при более высоких температурах, они должны сохранять прочность на уровне 600 МПа при температурах до 1470 - 1670 К (в перспективе до 1770 - 1920 К) при пластической деформации не более 1 % за 500 ч работы. В качестве материала для таких ответственных деталей газотурбинных двигателей, как камера сгорания, детали клапанов, ротор турбокомпрессора, статор, используют нитриды и карбиды кремния, имеющие высокую теплостойкость.

Повышение тактико-технических характеристик авиационных двигателей невозможно без применения керамических материалов.

3) Керамика специального назначения - к керамике специального назначения относятся сверхпроводящая керамика, керамика для изготовления контейнеров с радиоактивными отходами, броневой защиты военной техники и тепловой защиты головных частей ракет и космических кораблей.

4) Контейнеры для хранения радиоактивных отходов - одним из сдерживающих факторов развития ядерной энергетики является сложность захоронения радиоактивных отходов. Для изготовления контейнеров применяют керамику на основе оксида В 2 О 3 и карбида бора В4С в смеси с оксидом свинца РbО или соединениями типа 2РbО*PbSO 4 . После спекания такие смеси образуют плотную керамику с малой пористостью. Она характеризуется сильной поглощающей способностью по отношению к ядерным частицам - нейтронам и -квантам.

5) Ударопрочная броневая керамика - по своей природе керамические материалы являются хрупкими. Однако при высокой скорости нагружения, например в случае взрывного удара, когда эта скорость превышает скорость движения дислокаций в металле, пластические свойства металлов не будут играть никакой роли и металл будет таким же хрупким, как и керамика. В этом конкретном случае керамика существенно прочнее металла.

Важными свойствами керамических материалов, обусловивших их применение в качестве брони, является высокие твердость, модуль упругости, температура плавления (разложения) при в 2 - 3 раза меньшей плотности. Сохранение прочности при нагреве позволяет использовать керамику для защиты от бронепрожигающих снарядов.

В качестве критерия пригодности материала для броневой защиты М может быть использовано следующее соотношение:

где Е - модуль упругости, ГПа; Н к - твердость по Кнупу, ГПа; - предел прочности, МПа; Т пл - температура плавления, К; - плотность, г/см 3 .

В таблице 5 приведены основные свойства широко применяемых броневых керамических материалов в сравнении со свойствами броневой стали.

Наиболее высокие защитные свойства имеют материалы на основе карбида бора. Их массовое применение сдерживается высокой стоимостью метода прессования. Поэтому плитки из карбида бора используют при необходимости существенного снижения массы броневой защиты, например для защиты кресел и автоматических систем управления вертолетов, экипажа и десанта. Керамику из диборида титана, имеющую наибольшую твердость и модуль упругости, применяют для защиты от тяжелых бронебойных и бронепрожигающих танковых снарядов.

Для массового производства керамики наиболее перспективен сравнительно дешевый оксид алюминия. Керамику на его основе используют для защиты живой силы, сухопутной и морской военной техники.

По данным фирмы «Morgan M. Ltd» (США), пластина из карбида бора толщиной 6,5 мм или из оксида алюминия толщиной 8 мм останавливает пулю калибром 7,62 мм, летящую со скоростью более 800 м/с при выстреле в упор. Для достижения того же эффекта стальная броня должна иметь толщину 10 мм, при этом масса ее будет в 4 раза больше, чем у керамической. Наиболее эффективно применение композиционной брони, состоящей из нескольких разнородных слоев. Наружный керамический слой воспринимает основную ударную и тепловую нагрузку, дробится на мелкие частицы и рассеивает кинетическую энергию снаряда. Остаточная кинетическая энергия снаряда поглощается упругой деформацией подложки, в качестве которой может использоваться сталь, дюралюминий или кевларовая ткань в несколько слоев. Эффективно покрытие керамики легкоплавким инертным материалом, играющим роль своеобразной смазки и несколько изменяющим направление летящего снаряда, что обеспечивает рикошет.

Конструкция керамической брони показана на рисунке 2.

Рисунок 2 - Конструкция керамической бронепанели: а, б - составляющие элементы бронепанели для защиты от бронебойных пуль разного калибра; в - фрагмент бронепанели, собранный из элементов а и б; 1 - бронебойная пуля калибра 12,7 мм; 2 - пуля калибра 7,62 мм; 3 - защитное покрытие частично снято

Бронепанель состоит из отдельных последовательно соединенных керамических пластин размером 50 * 50 или 100 * 100 мм. Для защиты от бронебойных пуль калибром 12,6 мм используют пластины из Аl 2 О 3 толщиной 15 мм и 35 слоев кевлара, а от пуль калибром 7,62 мм - пластины из Аl 2 О 3 толщиной 6 мм и 12 слоев кевлара.

Во время войны в Персидском заливе широкое использование армией США керамической брони из Аl 2 О 3 , SiC и В 4 С показало ее высокую эффективность. Для броневой защиты также перспективно применение материалов на основе AlN, TiB 2 и полиамидных смол, армированных керамическими волокнами.

6) Керамика в ракетно-космическом машиностроении - при полете в плотных слоях атмосферы головные части ракет, космических кораблей, кораблей многоразового использования, нагреваемые до высокой температуры, нуждаются в надежной теплозащите.

Материалы для тепловой защиты должны обладать высокой теплостойкостью и прочностью в сочетании с минимальными значениями коэффициента термического расширения, теплопроводности и плотности.

Исследовательский центр НАСА США (NASA Ames Research Centre) разработал составы теплозащитных волокнистых керамических плит, предназначенных для космических кораблей многоразового использования. Свойства плит ряда составов приведены в таблице 6. Средний диаметр волокон 3 - 11 мкм.

Для повышения прочности, отражательной способности и абляционных характеристик внешней поверхности теплозащитных материалов их покрывают слоем эмали толщиной около 300 мкм. Эмаль, содержащую SiC или 94 % SiO 2 и 6 % В 2 О 3 , в виде шликера наносят на поверхность, а затем подвергают спеканию при 1470 К. Плиты с покрытиями используют в наиболее нагреваемых местах космических кораблей, баллистических ракет и гиперзвуковых самолетов. Они выдерживают до 500 десятиминутных нагревов в электродуговой плазме при температуре 1670 К. Варианты системы керамической теплозащиты лобовых поверхностей летательных аппаратов приведены на рисунке 3.

Рисунок 14.3 - Система керамической теплозащиты лобовых поверхностей летательных аппаратов для температур от 1250 до 1700 о С: 1 - керамика на основе SiC или Si 3 N 4 ; 2 - теплоизоляция; 3 - спеченная керамика

Высокопористый волокнистый слой теплоизоляции на основе FRCI, АЕТВ или HTR защищен облицовкой из слоя карбида кремния. Облицовочный слой предохраняет теплоизолирующий слой от абляционного и эрозионного разрушения и воспринимает основную тепловую нагрузку.

Заключение

Промышленная керамика вот уже много десятков лет применяется в машиностроении, в металлургии, в химической промышленности, в деревообрабатывающей и в авиационной промышленности. Зачастую предприятия, фирмы, заводы просто не могут обойтись без изделий, которые смогли бы работать в экстремальных условиях работы.

Развитие данной отрасли промышленности имеет высокие перспективы, что влечет за собой увеличение качества обработки материалов, длительности их службы, производительности, износостойкости и многих других факторов.

Список использованных источников

1. Лахтин Ю.М. «Материаловедение Учебник для высших технических учебных заведений».: 1990. - 514с.

2. Кнунянц И.Л. «Краткая химическая энциклопедия» Том 2. - М.: Химия, 1963. - 539с.

3. Карабасов Ю.С. «Новые материалы» 2002. - 255с.

4. Балкевич В.Л. «Техническая керамика».: 1984.

Размещено на Allbest.ru

Подобные документы

    Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа , добавлен 02.03.2011

    Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.

    курсовая работа , добавлен 06.06.2014

    Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат , добавлен 26.04.2011

    Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.

    курсовая работа , добавлен 17.10.2008

    Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.

    дипломная работа , добавлен 04.08.2012

    Виды керамики, характеристика материалов, используемых для формования керамических изделий. Приготовление керамической массы. Полусухое и гидростатическое прессование. Различные варианты вибрационного формования. Специфика применения шликерного литья.

    реферат , добавлен 13.12.2015

    Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа , добавлен 27.05.2015

    Анализ существующих технологических процессов алмазно-абразивной обработки напылённых покрытий и технической минералокерамики. Физико-механические свойства керамических материалов. Влияние технологических факторов на процесс обработки напылённой керамики.

    дипломная работа , добавлен 28.08.2011

    Изучение товарной продукции в виде керамической плитки для полов и сферы ее применения в строительстве. Потребительские свойства керамической плитки. Описании технологии ее производства. Характеристика сырья полусухого производства. Контроль качества.

    реферат , добавлен 11.03.2011

    Изучение технологии изготовления керамики - материалов, получаемых из глинистых веществ с минеральными или органическими добавками или без них путем формования и последующего обжига. Этапы производства: формовка изделия, нанесение декора, сушка, обжиг.

ОБЖИГОВЫЕ КАМЕННЫЕ МАТЕРИАЛЫ

Предохранение каменных материалов от разрушения

Основные причины разрушения природных каменных мате­риалов в сооружениях: замерзание воды в порах и трещинах, вы­зывающее внутренние напряжения; частое изменение температу­ры и влажности, вызывающее появление в материале микротре­щин; растворяющее действие воды и понижение прочности при водонасыщении; химическая коррозия, происходящая под дейст­вием газов, содержащихся в атмосфере (SO 2 , СО 2 и др.), и ве­ществ, растворенных в грунтовой или морской воде.

Конструктивную защиту открытых частей сооружений (цоколей, карнизов, поясков, столбов, парапетов) сводят к приданию им такой формы, которая облегчает отвод воды. Этому же способствует гладкая полированная поверхность облицовки и про­филированных деталей.

Для пористых каменных материалов, которые не полируются, используют химическую защиту , например,путем пропитки поверхностного слоя уплотняющими составами и нанесения на лицевую поверхность гидрофобизирующих (водоотталкивающих) составов. Кремнефторизацию (или флюатирование ) применяют для повышения стойкости наружной облицовки и других материалов, полученных из карбонатных пород. При пропитывании известняка раствором флюата (соли кремнефтористоводородной кислоты) происходит химическая реакция

2СаСО 3 + MgSiF6 = 2CaF 2 + MgF 2 + SiO 2 + 2CO 2

Полученные нерастворимые в воде вещества CaF 2 , MgF 2 и SiО 2 отлагаются в порах и уплотняют лицевой слой камня. В результате этого уменьшается его водопоглощение и возрастает морозостойкость; облицовка из камня меньше загрязняется пылью.

Некарбонатные пористые каменные материалы предварительно обрабатывают водными растворами кальциевых солей (например, СаС1 2), а после этого пропитывают флюатами.

Гидрофобизация , т.е. пропитка гидрофобными составами (например, кремнийорганическими жидкостями), понижает проникновение влаги в пористый камень, в частности при капиллярном подсосе. Для защиты камня от коррозии применяют пленкообразую­щие полимерные материалы – прозрачные и окрашенные. Также про­питывают поверхность камня мономером с последующей его полимеризацией.

Керамическими (от греческого «керамос» – глина) называют искусственные каменные материалы и изделия, получаемые высокотемпературным обжигом глин с минеральными добавками.

Классификация керамических изделий. По структуре черепка различают: а) плотные изделия со спекшимся черепком (материал, из которого состоят керамические изделия после обжига, в технологии керамики называют керамическим черепком) и водопоглощением менее 5 % (плитки для полов и облицовки фасадов, клинкерный кирпич); б) пористые изделия с водопоглощением более 5 % (стеновые, плитки внутренней облицовки стен).


По назначению различают керамические изделия: для стен (кирпич и керамические камни); облицовки фасадов (лицевой кирпич и камни); плитки для внутренней облицовки стен и полов; кровельные (черепица); санитарно-техническое оборудование (изделия из фаянса); дорог и подземных коммуникаций (дорожный кирпич, трубы и т.п.); теплоизоляции (легкий кирпич, фасонные изделия); кислотоупорные изделия (кирпич, плитки, трубы и т.п.); огнеупоры; заполнители для легких бетонов (керамзит, аглопорит).

Сырье для производства керамических изделий. Основным сырьевым материалом для производства строительных керамических изделий является глинистое сырье, применяемое в чистом виде, а чаще в смеси с добавками – отощающими, пластифицирующими, порообразующими, плавнями и др.

Основные свойства глин как сырья для производства керамики : пластичность и связность глиняного теста, способность отвердевать при высыхании и переходить в необратимое камневидное состояние при обжиге.

Пластичность глин обеспечивается содержанием в них глинистых частиц пластинчатой формы размером 0,005 мм и менее. Наличие между этими частицами тонких слоев воды за счет действия молекулярных и капиллярных сил обеспечивает связность частиц и способность их к скольжению относительно друг друга без потери связности.

При сушке глиняное тесто теряет воду и уменьшается в объеме. Этот процесс называется воздушной усадкой (2-12 % по объему). При этом глина затвердевает, но при добавлении воды вновь переходит в пластичное состояние. При обжиге при температуре около 1000 °С керамическая масса безвозвратно теряет свои пластические свойства и за счет образования новых минералов приобретает камневидное состояние, водостойкость и прочность. Одновременно с этим происходит дальнейшее уплотнение и усадка материала, которая называется огневой усадкой (2-8 %). Способность глин уплотняться при обжиге и образовывать камнеподобный черепок называется спекаемостью глин. В зависимости от температуры обжига получают пористый (около 1000 °С) или спекшийся (более 1100 °С) черепок.

Основные виды керамических изделий – этостеновые изделия, облицовочные материалы и изделия, керамические материалы и изделия специального назначения.

Стеновые изделия. В группу стеновых керамических материалов входят кирпич (одинарный, утолщенный, модульных размеров) и камни, изготовляемые способом полусухого прессования или пластического формования, а также крупноразмерные блоки и панели. Кирпич керамический одинарный имеет форму прямоугольного параллелепипеда с ровными гранями, прямыми ребрами и углами размерами 250´120´65 мм; утолщенный – размерами 250´120´88 мм. Кирпич может выпускаться полнотелым (без пустот и с технологическими пустотами в количестве не более 13 %) и пустотелым (с вертикальным или горизонтальным расположением пустот), а камни – только пустотелыми. Плотность кирпича и камней в зависимости от наличия и количества пустот находится в пределах от 1400 до
1900 кг/м 3 , теплопроводность – от 0,4 до 0,8 Вт/(м × ºС). По этим показателям пустотелые кирпич и камни, а также пористо-пустотелый кирпич (в состав керамической массы вводят выгорающие добавки) относятся к группе эффективных стеновых керамических изделий. Причем эти виды кирпича и камней подразделяют на условно-эффективные, улучшающие теплотехнические свойства стен, и эффективные, позволяющие значительно уменьшить толщину стен.

Марку камней по прочности определяют в зависимости от значений предела прочности при сжатии, а для кирпича – и с учетом предела прочности при изгибе. Марки по прочности полнотелого кирпича, а также пустотелых кирпича и камней с вертикальным расположением пустот – 75, 100, 125, 150, 175, 200, 250 и 300, а с горизонтально расположенными пустотами – 25, 35, 50, 100. Марки кирпича и камней по морозостойкости F 15, F 25, F 35, F 50. Водопоглощение не должно быть для полнотелого кирпича менее 8 %, для пустотелых изделий - менее 6 %. Масса кирпича в высушенном состоянии не должна быть более 4,3 кг, камней - не более 16 кг.

Эти изделия применяются для кладки наружных и внутренних стен, кладки фундаментов (из полнотелого кирпича).

Облицовочные материалы и изделия. Различают: фасадные облицовочные изделия – кирпич и камни керамические лицевые (укладывают в стену здания в перевязку с обыкновенными, они отличаются от последних повышенными физико-механическими показателями и улучшенными показателями внешнего вида); керамические изделия для внутренней облицовки – плитки для внутренней облицовки стен (применяют в помещениях санузлов, кухонь, бань, прачечных, станций метро и т.п.); плитки для полов. Величина основного, помимо размеров и внешнего вида, нормируемого показателя для керамических плиток – водопоглощения – имеет значение при выборе материала для облицовки помещений с влажным режимом и плиток для полов. При обычных условиях эксплуатации (внутри помещений) этот параметр не оказывает заметного влияния на потребительские свойства керамической плитки. Совершенно иная ситуация складывается при использовании плитки вне помещения: морозостойкость керамических изделий напрямую зависит от водопоглощения. Считается, что плитка с водопоглощением менее 3 % пригодна для применения на улице (крыльцо, балкон и т.п.) или в неотапливаемых помещениях. Керамические плитки для улучшения внешнего вида и создания дополнительной защиты покрывают глазурью .

Керамический гранит принадлежит к тому же классу отделочных материалов, что и керамическая плитка, но отличается от нее повышенными механическими характеристиками (прочностью, твердостью и износостойкостью), а также текстурой, имитирующей природный камень. Этот комплекс свойств достигается в результате применения смеси глин и минеральных добавок, сходной по составу с фарфоровой массой. Плитки, отформованные из этой смеси под высоким (до 50 МПа) давлением, подвергаются высокотемпературному обжигу (более 1200 °С), что приводит к спеканию массы и обеспечивает получение чрезвычайно твердого и плотного черепка, практически лишенного пор и пустот. Это позволяет обходиться без нанесения на поверхность плитки защитного слоя глазури.

Керамические плитки и керамогранит производятся размеров: от 15´15 до 40´40 и 30´60 см. Толщина облицовочных плиток обычно 5; 6 мм; плиток для полов и керамогранита – 8,5; 12; 15 мм.

Керамические материалы и изделия специального назначения. Выпускают кирпич и камни керамические для кладки и футеровки промышленных дымовых труб и печей; камни трапецеидальной формы для устройства подземных коллекторов; дорожный клинкерный кирпич для мощения улиц и дорог, полов, облицовки набережных и т.п.; глиняную черепицу – старейший вид кровельных материалов; керамические трубы: канализационные (с плотным черепком) и дренажные (с пористым черепком); теплоизоляционные керамические изделия – ячеистая керамика, керамзит; огнеупорные материалы (изготавливают в виде кирпича, блоков, плит из различных сырьевых компонентов по технологии, близкой к керамической).

Посуда из обожженной глины появилась несколько веков назад и с тех пор плотно вошла в жизнь человека. До наших дней она дошла практически без изменений, но сегодня мы хотим рассказать не совсем о ней, а о ее более практичной и красивой последовательнице – керамике.

Отличие от простой глины

Керамика отличается от глины всего несколькими моментами, но их достаточно для того, чтобы готовые изделия получили новые практичные свойства.

Этот материал состоит из двух основных компонентов: глины, использующейся в качестве основы, и добавок. В качестве последних могут применяться различные твердые минеральные вещества, например, песок или обычный мел. Все это влияет на пористость, степень поглощения воды и даже цвет.

Еще одно важное отличие кроется в технологии производства. В то время как обжиг глиняного изделия является завершающей стадией его изготовления, для керамической посуды это только половина дела. Для дополнительной защиты и увеличения прочности ее поверхность обязательно покрывается тонким слоем глазури – специального состава на основе стекла. После его нанесения производится повторный обжиг при более низких температурах для закрепления защитного слоя на поверхности.

Свойства керамики

В зависимости от выбранных компонентов и отличий в технологии изготовления конечные свойства керамической посуды могут несколько различаться, но «базовый список» качеств остается неизменным для всех изделий:

  • Они отличаются прочностью, но не переносят ударов и падений.
  • Стенки керамической посуды имеют пористую структуру, из-за чего тепло при нагревании начинает распространяться плавно, равномерно распределяясь по всей поверхности. Это положительно сказывается на вкусе блюд, делая их более сочными и наваристыми, напоминающими супы и рагу из русской печи.
  • Глазурь надежно защищает основу от впитывания влаги и отличается устойчивостью к царапинам.
  • Наличие в покрытии стекла добавляет посуде антипригарные свойства. Даже с минимальным количеством масла продукты в качественной керамике не прилипают и не подгорают при готовке.
  • Материал экологически чист и безопасен.
  • Он не имеет собственного запаха, поэтому не может испортить вкус готового блюда.
  • Диапазон температур для использования керамических изделий очень широк – в них можно готовить в духовке, а также хранить еду в холодильнике. Единственное, чего керамика не переносит – это резких перепадов температур. Из-за резкого расширения воздуха в порах она легко трескается.

Виды

Как мы уже отметили, используемые в составе компоненты влияют на внешний вид и свойства, фактически, формируя несколько видов материала:

  • Фарфор – один из самых известных и легко отличимых видов. Его можно узнать по небольшому весу и тонким, чуть прозрачным стенкам фарфоровой посуды . Для ее изготовления используется белая глина, которая и дает тот самый «фирменный» бело-голубой оттенок. Несмотря на изящность и тонкость, фарфор имеет достаточно высокую прочность и жароустойчивость.
  • Фаянс – он похож на фарфор, так как также производится из белой глины, но имеет более пористую структуру, из-за которой стенки изделий приходится делать более толстыми. Общая прочность фаянса примерно на четверть ниже, чем у фарфора.
  • Терракотовая глина – в отличие от предыдущих видов, этот материал имеет темные оттенки – от желто-горчичного до насыщенного коричневого, красноватого или даже черного. Эту особенность нередко превращают в преимущество, укрывая поверхность прозрачной глазурью. Без дополнительной защиты такая глина сильно впитывает воду, поэтому раньше использовалась только для изготовления емкостей для хранения сыпучих сухих продуктов.
  • Стеклокерамика – современный материал, в состав которого не входит глина. Тем не менее, посуда из него производится примерно по тому же принципу – изделия не просто формируются из специального стеклянного состава, но и дополнительно обжигаются.
  • Доломит – еще одна разновидность, набравшая популярность относительно недавно. Фактически он также не является керамикой (это одна из разновидностей известняка), но по внешнему виду и ряду свойств очень похож на нее. Посуду для готовки и использования в печи из него не изготавливают, но используют при создании, например, заварочных чайников, сахарниц и вазочек.

Какие кухонные принадлежности изготавливают из керамики?

Керамика используется для создания посуды и других кухонных принадлежностей крайне широко. Из нее изготавливаются:

  • кастрюли,
  • сковороды,
  • горошочки,
  • формы для запекания и выпечки,
  • чашки, чайники, сервизы,
  • сахарницы, вазочки для конфет,
  • тарелки и большие блюда,
  • подставки для половников и чайных пакетиков,
  • солонки,
  • кухонные ножи.

Скорее всего, это даже не полный список, и если вы заглянете на свою кухню, то наверняка найдете что-нибудь, о чем мы забыли упомянуть.

И напоследок стоит сделать акцент на сковородках и кастрюлях, в которых керамика используется только в качестве антипригарного покрытия. По распределению тепла они ближе к обычной металлической посуде, но покрытие, в отличие от тефлонового, гораздо прочнее и долговечнее. Однако добиться того самого насыщенного аромата и особого вкуса, свойственного блюдам, приготовленным в керамической посуде, в них не удастся.

По составу и свойствам керамические изделия делят на типы, виды и разновидности.

Тип керамики определяется

составом и соотношением отдельных фаз

Их обработкой, особенно тонкостью помола,

составом глазурей,

температурой и длительностью обжига.

В состав масс всех типов керамики входят пластичные глинистые вещества (глина, каолин), отощающие материалы (кварц, кварцевый песок), плавни (полевой шпат, пегматит, перлит, костяная зола и др.) При обжиге отформованных изделий в результате сложных физико-химических превращений и взаимодействий компонентов масс и глазурей, формируется их структура.

По характеру строения керамику подразделяют на грубую и тонкую.

Изделия грубой керамики (гончарные изделия, кирпич, черепица) имеют пористый крупнозернистый черепок неоднородной структуры, окрашенный естественными примесями в желтовато-коричневые цвета.

Тонкокерамические изделия отличаются тонкозернистым белым или светлоокрашенным, спекшимся или мелкопористым черепком однородной структуры.

По степени спекания (плотности) черепка различают керамические изделия:

Плотные, спекшиеся с водопоглощением менее 5% - фарфор, тонкокаменные изделия, полуфарфор;

Пористые с водопоглощением более 5% - фаянс, майолика, гончарные изделия.

В зависимости от строения различают:

Грубую имеют пористый крупнозернистый в изломе черепок неоднородной структуры, окрашенный естественными примесями в желтовато-коричневые цвета (пористость 5-30%) - гончарная керамика - гончарные изделия, кирпич, черепица. К грубой керамике относят многие строительные керамические материалы, например лицевой кирпич

Тонкую керамику отличается тонкозернистым белым или светлоокрашенным, спекшимся стекловидным или мелкопористым черепком однородной структуры (пористость <5%) - фарфор, полуфарфор, фаянс, майолика, керметы.

В особую группу выделяют так называемую высокопористую керамику (пористость 30-90%), к которой обычно относят теплоизоляционные керамические материалы.

Свойства керамических изделий зависят как от состава применяемых масс, так и от технологических особенностей их производства.

Керамика необходима там, где требуется высокая устойчивость к внешнему воздействию: высокая температура, истирание, агрессивные среды и т.д.

Неизменность структуры и свойств обеспечивают прочные химические связи.

Благодаря уникальности своих свойств керамики получили заслуженное признание в различных отраслях техники.

Физические и механические свойства керамик определяются характером химической связи и кристаллической структурой.



В зависимости от назначения керамики получение заданных свойств изделий достигается подбором сырьевых материалов и добавок и особенностями технологии.

К основным свойствам относятся плотность, механическая прочность, твердость, пористость, термическая стойкость, химическая устойчивость, белизна, просвечиваемость, скорость распространения звуковых волн.

Керамики характеризуются высокой твёрдостью, жёсткостью, относительно высоким пределом прочности на сжатие и недостатком пластичности.

Твердость. Даже пористая гончарная глина царапает стекло, т.к. содержит частицы кварца (по Моосу 7).Техническая керамика содержит в своем составе окись алюминия (по Моосу 9) – сапфир, рубин. Наиболее полно это свойство используют в абразивных керамических материалах – карбид кремния, окись алюминия, нитрид бора и углерода – твердые и сверхтвердые материалы.

Механическая прочность - одно из важнейших свойств, от которого зависит долговечность изделия. Обладает достаточно высокой прочностью. Прочность сильно зависит от пористости керамики. глиняный горшок, фарфоровая чашка с тонкими стенками… Удельная механическая прочность, т. е. отношение приложенного усилия к единице толщины дна, определяется по методу свободного падения стального шарика по дну изделия. У фаянса она более высокая, чем у фарфора. Прочность на удар по методу маятника наоборот у фаянсовых изделий ниже, чем у фарфоровых.

Хорошо выдерживает напряжения сжатия, хуже изгиба и совсем плохо напряжения растяжения (35-350 МПа, обычный кирпич 5 МПа, стальная проволока рояльная 3100 МПа, кожа 40 МПа, человеческий волос 190 МПа). При конструировании формы изделия рассчитывают форму так, чтобы возникающие в процессе эксплуатации усилия приводили к напряжениям сжатия или изгиба.(картинка).

Плотност ь зависит от состава и пористости фарфора равна 2,25-2,4 г/см³, а фаянса - 1,92-1,96 г/см³.

Пористость определяют методом водопоглощения, которая у фарфора составляет 0,01-0,2%, а у фаянса - 9-12%.

Огнеупорность – устйчивость к действию высоких температур.Востребована в печах и агрегатах для выплавки металлов. Т 1000-3000. При Т более 1000 прочнее любых сплавов. Зависит от состава, т.е. от температуры плавления основных ее компонентов. Не все керам материалы являются огнеупорными, вся строительная керамика, хозяйственно-бытовая – невысокие температуры эксплуатации. Пожар выдержат, но глазурное покрытие покроется цеком.

Огнеупорностью называют свойство керамических материалов и изделий противостоять воздействию высоких температур, не расплавляясь. Показателем (количественной мерой) огнеупорности является температура, при которой образец из данного материала, имеющий форму трехгранной усеченной пирамиды (условно именуется «конусом»), деформируется под влиянием собственной тяжести, касаясь при этом своей вершиной керамической подставки.

Термостойкость характеризует способность изделия выдерживать резкие смены температур. Для глазурованных плиток =125-150 С, что означает возможность резкого перепада от этой температуры до 20 С без образования трещин.

Термостойкие материалы должны иметь низкий температурный коэф. лин. расш., высокую теплопроводность и мех прочность.

Наиболее термостойкой является кварцевая керамика, керамика на основе кордиерита, сподумена.

Наиболее термостойкие из художественной керамики фарфор и каменная керамика – делают чайники, чашки. Термическая стойкость фарфоровых изделий выше, чем у фаянсовых. Так, в соответствии с действующими ГОСТами 28390-89 и 28391-89 термостойкость фарфоровых изделий должна быть 185°С, фаянсовых - от 125°С (для бесцветных глазурей) и 115°С (для цветных глазурей).

Химические связи в керамиках весьма прочны, поэтому керамики характеризуются также высокими температурами плавления и химической устойчивостью.

Керамика tпл.,°С

Карбид титана TiC 3120

Борид титана TiB2 2980

Карбид вольфрама WC ~2850

Оксид алюминия Al2O3 2050

Оксид хрома Cr2O3 1990

Торстерит 2MgO·SiO2 1830

Муллит 3Al2O3·2SiO2 1810

Оксид кремния (кристобалит) 1715

Оксид титана TiO2 1605

Отсутствие свободных электронов служит причиной того, что керамики, как правило, плохо проводят электричество и тепло . Поэтому керамики широко используются в электротехнике как диэлектрики.

Потребности вакуумной техники в керамике связаны, в первую очередь, с их высокими диэлектрическими качествами, высокой химической стойкостью (в том числе и при высоких температурах) и высокой температуростойкостью.

отсутствие у большинства материалов гигроскопичности,

хорошие электрические (пьезоэлектрические, сегнетоэлектрические)

и магнитные характеристики при достаточной механической прочности, стабильности характеристик и надежности,

стойкость к воздействию излучения высокой энергии и использование достаточно дешевого и доступного сырья обеспечило их широкое применение в различных областях.

Гигроскопичность - керамика является экологически чистым продуктом и имеет капиллярную структуру, позволяющую стене "дышать". Стена из такого материала выполняет функцию естественного кондиционера: вбирает влагу при ее избытке и отдает при недостатке, поддерживая здоровый температурно-влажностный баланс в жилом помещении. Поверхность стены остается сухой в любое время года, что, в свою очередь, предотвращает образование грибка и плесени.
В Европе керамический блок хорошо знают и любят. На сегодняшний день более половины зданий возводятся из этого материала. Теперь этот материал пришел и на российский рынок и уверенно продолжает его завоевание благодаря своим неоспоримым преимуществам.

Эстетические свойства керам материалов сложно охарактеризовать однозначно, так как слишком различны составы, фактуры поверхности и способы декорирования.

Для гончарной керамики и терракоты большую роль играет фактурность поверхности и теплые тона естественных природных окрасок. терракотовый цвет.

Декоративность майолики, фаянса, фарфора связана в первую очередь с покрытием глазурью и росписью. Фаянс – ощутимая толщина, грубость формы, фарфор изящная холодность, просвечиваемость.

Оценивая эстетические свойства керам изделий можно подчеркнуть их пластичность и естественность форм, многообразие фактур и расцветок, т.е.высокие декоративные возможности.

Керамика один из самых экологически чистых материалов.

Белизна - способность материала отражать падающий на него свет. Особенно важна белизна для фарфоровых изделий. Белизна определяется визуально путем сравнения испытуемого образца с эталоном или с помощью электрического фотометра, а также на "Спеколе".

Скорость распространения звуковых волн для фарфоровых изделий в 3-4 раза выше, чем у фаянсовых, поэтому при ударе деревянной палочкой по краю фарфоровые изделия издают высокий звук, а фаянсовые - глухой.

Просвечиваемость характерна для фарфора, который просвечивает при большой толщине изделия, так как имеет спекшийся черепок. Фаянсовые изделия не просвечивают из-за пористого черепка.

Твердость глазурного слоя по минералогический шкале для фарфора составляет 6,5-7,5, а для фаянса - 5,5-6,5, микротвердость определяется вдавливанием алмазной пирамидки. Фарфоровые глазури считаются твердыми, майоликовые - мягкими, а фаянсовые относятся к средним.

Химическая устойчивость глазурей и керамических красок, применяемых для бытовых фарфоровых и фаянсовых изделий, должна быть высокой, так как при обработке слабыми кислотами и щелочами при обыкновенной температуре или при нагревании до 60-65°С они не должны разрушаться.

Цвет “живой глины” обманчив. Высохшая на воздухе, она, как правило, лишь немного светлеет. Но при обжиге большинство глин резко меняют свой цвет: зеленая становится розовой, бурая - красной, синяя и черная - белой. Например, мастера из села Фнлимоново под Тулой лепят свои знаменитые игрушки из черно-синей глины, которая после обжига приобретает белый, чуть кремоватый цвет. Здесь в печи при обжиге выгорают все органические частицы, которые придавали ей “живую” черную окраску. Только белая глина и после обжига остается белой.

Loading...Loading...