Образование и свойства электронно дырочного перехода. Т. n-p-переход. Вольт-амперная характеристика p-n перехода

Электронно-дырочный переход (p n -переход) – это переходный слой между двумя областями полупроводника с разной электропроводностью, в котором существует диффузионное электрическое поле.

Области разделены плоскостью, где изменяется тип преобладающих примесей и называемой металлургической границей. Вблизи металлургической границы существует обедненный подвижными носителями заряда слой, где присутствуют неподвижные ионизированные атомы примеси (рис. 3.1).

Рис. 3.1 . Электронно-дырочный переход

Неподвижные ионы в обедненном слое создают объемные электрические заряды положительной и отрицательной полярности. Тем самым создается диффузионное электрическое поле напряженностью Е диф и контактная разность потенциалов к. Величина контактной
разности потенциалов зависит от концентрации акцепторной примеси
N A , N D и температуры:

.

Толщина обедненного слоя также зависит от концентрации при­месей:

,

где А – коэффициент, определяемый материалом полупроводника.

3.2. Ток через p–n- переход

Через p–n -переход течет ток, представляющий сумму диффузионной и дрейфовой составляющих. Диффузионный ток образуется основными носителями заряда, для движения которых диффузионное поле является тормозящим. Увеличение диффузионного тока увеличивает напряженность поля Е диф, контактную разность потенциалов и потенциальный барьер . Это приводит к уменьшению тока. Таким образом устанавливается равновесие.

Дрейфовый ток образуется неосновными носителями заряда, для которых диффузионное поле является ускоряющим.

В равновесном состоянии сумма диффузионного и дрейфового токов равна нулю:

I диф + I др = 0.

3.3. Прямое включение p n -перехода

Прямым называется такое включение, при котором создаваемое внешним напряжением поле направлено против диффузионного поля (рис. 3.2).

Рис. 3.2 . Прямое включение p–n -перехода

В результате контактная разность потенциалов уменьшается, потенциальный барьер снижается, ток основных носителей заряда через переход увеличивается.

3.4. Обратное включение p n -перехода

Обратное включение p n -перехода характеризуется тем, что напряженность поля, создаваемого внешним напряжением, совпадает по направлению с напряженностью диффузионного поля (рис. 3.3).

Рис. 3.3 . Обратное включение p n -перехода

В результате контактная разность потенциалов увеличивается, потенциальный барьер повышается, ток основных носителей заряда через переход уменьшается.

3.5. (ВАХ)
идеализированного p–n- перехода

Вольт-амперная характеристика p n -перехода – это зависимость тока через переход от приложенного к нему напряжения.

Идеализация p–n -перехода заключается в принятии следующих
допущений.

1. Прилегающие к переходу области p и n характеризуются нулевым удельным сопротивлением. Поэтому внешнее напряжение прикладывается непосредственно к p n -переходу.

2. В области p n -перехода отсутствуют процессы генерации и рекомбинации свободных носителей заряда. Тогда ток через переход в зависимости от приложенного к переходу внешнего напряжения U внеш, т.е. вольт-амперную характеристику, можно описать формулой Шокли:

,

где I 0 – тепловой ток, который создается неосновными носителями заряда и зависит от трех факторов:

1) концентрации неосновных носителей заряда, обратно пропорциональной концентрации примесей;

2) ширины запрещенной зоны Чем больше тем мень-
ше I 0 ;

3) температуры. С увеличением температуры растет скорость генерации носителей заряда и увеличивается их концентрация.

3.6. Зонная (энергетическая) диаграмма
p–n- перехода

При U внеш = 0. Состояние равновесия. Уровень Ферми имеет одно значение для всей структуры (рис. 3.4).

При U внеш 0. Прямое включение p–n -перехода (рис. 3.5).

Рис. 3.4. Зонная диаграмма равновесного p–n -перехода

Рис. 3.5 . Зонная диаграмма при прямом включении p -n -перехода

При U внеш 0. Обратное включение p–n -перехода (рис. 3.6).

Рис. 3.6 . Зонная диаграмма при обратном включении p n -перехода

3.7. Отличия ВАХ реального
и идеализированного p–n -переходов

Реальные p–n -переходы являются, как правило, несимметричными. При этом концентрация примеси в одной области превышает концентрацию примеси в другой. Область с большей концентрацией называется эмиттером, с меньшей – базой. Меньшая концентрация примесей означает меньшую электропроводность и большее удельное сопротивление. Поэтому в реальных p–n -переходах пренебрегать удельным
сопротивлением базы нельзя. Эквивалентная схема реального
p–n -перехода имеет вид (рис. 3.7).

Рис. 3.7 . Эквивалентная схема реального p–n -перехода

Вторым отличием реального p–n -перехода от идеализированного является наличие в обедненном слое процессов генерации и рекомбинации носителей заряда. Поэтому при обратном включении ток через переход не постоянен, а зависит от приложенного к переходу напряжения (рис. 3.8).

Рис. 3.8 . Отличие ВАХ реального p n -перехода от идеализированного

Третье отличие заключается в присутствии явления пробоя при
обратном включении p–n -перехода.

3.8. Пробой p–n -перехода

Пробой проявляется как резкое увеличение тока через
p n -пере­ход при незначительном изменении приложенного обратного напряжения.

Различают три вида пробоя.

Лавинный пробой – возникает за счет лавинного размножения неосновных носителей заряда путем ударной ионизации. Напряжение, при котором он появляется, увеличивается с ростом температуры (рис. 3.9).

Рис. 3.9. ВАХ при лавинном пробое

Туннельный пробой – возникает за счет перехода электронов из связанного состояния в свободное без сообщения им дополнительной энергии. С ростом температуры напряжение пробоя уменьшается (рис. 3.10).

Рис. 3.10. ВАХ при туннельном пробое p–n -перехода

Тепловой пробой – это пробой, развитие которого обусловлено выделением тепла вследствие прохождения тока через переход. В отличие от лавинного и туннельного является необратимым, т. е. в результате пробоя переход перестает работать. С ростом температуры напряжение пробоя уменьшается (рис. 3.11).

Рис. 3.11 . ВАХ при тепловом пробое p–n -перехода

3.9. Зависимость ВАХ p n -перехода
от температуры

С ростом температуры ток через p–n -переход при прямом включении растет из-за увеличения энергии носителей электрического заряда, которые за счет этого легче преодолевают потенциальный барьер.

При обратном включении p–n -перехода с ростом температуры ток через него увеличивается за счет повышения скорости генерации носителей заряда в переходе (рис. 3.12).

Рис. 3.12. Зависимость ВАХ p–n -перехода от температуры

3.10. Зависимость ВАХ p–n- перехода от материала полупроводника

Вольт-амперная характеристика p n -перехода зависит от ширины запрещенной зоны энергетической диаграммы материала полупроводника.

Чем больше ширина запрещенной зоны , тем меньше скорость тепловой генерации и меньше концентрация неосновных носителей, создающих обратный ток I 0 . Следовательно, обратный ток меньше.

При прямом включении p n -перехода ток через него будет тем больше, чем меньше ширина запрещенной зоны. Действительно, ток через p n -переход определяется как

.

С увеличением значения ток I 0 уменьшается и ток I также уменьшается.

Для наиболее распространенных полупроводниковых материалов Ge, Si и GaAs ВАХ соотносятся следующим образом (рис. 3.13).

Рис. 3.13 . Зависимость ВАХ p–n -перехода
от материала

3.11. Емкость p–n -перехода

В обедненном слое p n -перехода присутствуют объемные заряды, которые образованы зарядами ионизированных донорных и акцепторных примесей. Эти заряды равны по величине и противоположны по знаку. Поэтому обедненный слой подобен конденсатору. Так как заряды определяют потенциальный барьер, то емкость называется барьерной. Ее величина равна

Где ,

где S – площадь p–n -перехода, U – внешнее напряжение, приложенное к переходу, n = 0,5 для резкого перехода, n = 0,3 для плавного перехода.

Зависимость величины барьерной емкости от величины приложенного к переходу напряжения называется вольт-фарадной характеристикой (рис. 3.14).

При прямом включении p–n -пере­хода происходит процесс инжекции неосновных носителей заряда. Появляются избыточные концентрации неосновных носителей в каждой области и в соответствии с условием электрической нейтральности равные им избыточные концентрации основных носителей. Таким образом, в n -области (как в конденсаторе) оказываются в равном количестве положительный заряд избыточных дырок (неосновные носители) и отрицательный заряд избыточных электронов (основные носители). Аналогично p -область ведет себя как конденсатор с отрицательным зарядом избыточных электронов (неосновные носители) и равным ему положительным зарядом избыточных дырок (основные носители).

Процесс накопления избыточных зарядов принято характеризовать диффузионной емкостью, которая учитывает изменение избыточных носителей (дырок и электронов) в обеих областях при изменении напряжения.

Диффузионная емкость определяется прямыми диффузионными токами дырок I p и электронов I n (отсюда название емкости) и временем жизни неосновных носителей и :

.

Диффузионные токи I p и I n растут с увеличением прямого напряжения на p-n -переходе и быстро обращаются в нуль при обратном. Поэтому зависимость С диф от напряжения примерно повторяет ход прямой ветви ВАХ p–n -перехода.

Эквивалентная схема p–n -пере­хо­да, учитывающая его емкостные свой­ства, приведена на рис. 3.15.

3.12. Контакт металл–полупроводник

Контакты между полупроводником и металлом широко используются для формирования внешних выводов от полупроводниковых областей приборов и создания быстродействующих диодов. Тип контакта металл–полупроводник определяется работой выхода электронов из металла и полупроводника, током проводимости полупроводника и концентрацией примеси в нем.

Работа выхода электронов – это энергия, необходимая для перевода электронов с уровня Ферми на потолок верхней свободной зоны.

При идеальном контакте металла с полупроводником и без учета поверхностных состояний происходит диффузия электронов преимущественно из материала с меньшей работой выхода. В результате диффузии и перераспределения зарядов нарушается электрическая нейтральность прилегающих к границе раздела областей, возникают контактное электрическое поле и контактная разность потенциалов

где А м, А п – работа выхода электронов из металла и полупроводника.

Переходный слой, в котором существует контактное (или диффузионное) электрическое поле и который образован в результате контакта между металлом и полупроводником, называется переходом Шоттки.

В зависимости от типа электропроводности полупроводника и от соотношения работ выхода в полупроводнике может возникать обедненный или обогащенный слой. Если работа выхода в металле меньше работы выхода в полупроводнике А м < А п, то электроны с большей вероятностью будут переходить из металла в полупроводник. Это приводит к образованию в полупроводнике обедненного слоя, если полупроводник p -типа, или даже инверсного слоя, если А м << А п. Если полупроводник n -типа, то образуется обогащенный слой.

В обедненных слоях пространственный заряд формируется в результате нарушения компенсации заряда ионизированных примесей основными носителями, а в обогащенных – из-за накопления основных носителей заряда. Обогащенный слой обусловливает малое сопротивление приконтактной области полупроводника по сравнению с сопротивлением объема полупроводника. Поэтому такой переход не обладает выпрямляющими свойствами и образует омический контакт. При наличии обедненного или инверсного слоя переход Шоттки обладает выпрямляющими свойствами, так как внешнее напряжение, падая в основном на высокоомном переходе, будет изменять высоту его потенциального барьера, изменяя условия прохождения носителей заряда через переход.

Характерной особенностью выпрямляющего перехода Шоттки в отличие от p–n -перехода является разная высота потенциальных барьеров для электронов и дырок. В результате через переход Шоттки может не происходить инжекция неосновных носителей заряда в полупроводник. Поэтому они не накапливаются и нет необходимости в их рассасывании. Отсюда высокое быстродействие перехода Шоттки.

Гетеропереходы

Гетеропереходом называется переходный слой с существующим там диффузионным электрическим полем между двумя различными по химическому составу полупроводниками.

Ширина электрических зон различных полупроводников различна. Поэтому на границе раздела двух полупроводников (на металлургическом контакте гетероперехода) получается разрыв дна зоны проводимости и потолка валентной зоны. В результате разрывов высота потенциальных барьеров для электронов и дырок в гетеропереходе оказывается различной. Это является особенностью гетеропереходов, обуславливающей специфические свойства гетеропереходов в отличие от p n -переходов.

Гетеропереходы могут образовываться полупроводниками с различным типом проводимости: p n , p p , n n . В зависимости от типа проводимости и ширины запрещенной зоны энергетических диаграмм ток через переход может определяться как электронами, так и дырками. Например, через контакт германия p -типа и арсенида галлия n -типа течет в основном электронный ток (рис. 3.16).

Рис. 3.16. Зонная диаграмма перехода Ge (p -типа) – GaAs (n -типа)

Через переход германий p -типа, арсенид галлия p -типа течет в основном дырочный ток (рис. 3.17).

Рис. 3.17 . Зонная диаграмма перехода Ge (p -типа) – GaAs (p -типа)

Для формирования качественного гетероперехода необходимо совпадение типа, ориентации и периода кристаллических решеток контактирующих полупроводников, чтобы кристаллическая решетка одного полупроводника с минимальным количеством нарушений переходила в кристаллическую решетку другого полупроводника. Наиболее широкое применение в полупроводниковых приборах имеют гетеропереходы между полупроводниками на основе арсенидов, фосфидов и антимонидов галлия и алюминия. Благодаря близости ковалентных радиусов галлия и алюминия изменения химического состава полупроводников в гетеропереходе происходят без изменения периода кристаллической решетки. Гетеропереходы создают также на основе многокомпонентных твердых растворов, в которых при изменении состава в широких пределах период решетки не изменяется.

3.14. Структура металл–диэлектрик–полупроводник

Структуры металл–диэлектрик–полупроводник (МДП) составляют основу полевых МДП транзисторов, фотоэлектрических приборов, конденсаторов, управляемых напряжением, а также широко используются в интегральных схемах.

Простейшая МДП структура содержит полупроводниковый кристалл – подложку, слой диэлектрика, металлический электрод – затвор, омический контакт к подложке (рис. 3.17).

Рис. 3.17 . Простейшая МДП структура

Структура имеет два вывода – затвор и контакт к подложке и является МДП конденсатором, емкость которого зависит от напряжения U между затвором и выводом подложки.

Напряжение затвора создает электрическое поле, проникающее через тонкий (0,03…0,1 мкм) слой диэлектрика в приповерхностный слой полупроводника, где оно изменяет концентрацию носителей. В зависимости от значения напряжения наблюдаются режимы обогащения, обеднения или инверсии.

Эквивалентную схему МДП структуры можно представить последовательным включением двух конденсаторов С D – емкость диэлектрика и С g :

где J п – плотность заряда нескомпенсированных ионов примесей и подвижных носителей заряда в полупроводнике, j пов – напряжение в поверхностном слое полупроводника, S – площадь затвора.

Наиболее широко применяется МДП структура на основе кремния, где диэлектриком служит диоксид кремния, затвором – пленка алю­миния.


Похожая информация.


Если блок полупроводника P-типа соединить с блоком полупроводника N-типа (рисунок ниже (a)), результат не будет иметь никакого значения. У нас будут два проводящих блока соприкасающихся друг с другом, не проявляя никаких уникальных свойств. Проблема заключается в двух отдельных и различных кристаллических структурах. Количество электронов уравновешивается количеством протонов в обоих блоках. Таким образом, в результате ни один блок не имеет какого-либо заряда.

Тем не менее, один полупроводниковый кристалл, изготовленный из материала P-типа с одной стороны и материала N-типа с другой стороны (рисунок ниже (b)), обладает уникальными свойствами. У материала P-типа основными являются положительные носители заряда, дырки, которые свободно передвигаются по кристаллической решетке. У материала N-типа основными и подвижными являются отрицательные носители заряда, электроны. Вблизи перехода электроны материала N-типа диффундируют через переход, соединяясь с дырками в материале P-типа. Область материала P-типа вблизи перехода приобретает отрицательный заряд из-за привлеченных электронов. Так как электроны покинули область N-типа, та приобретает локальный положительный заряд. Тонкий слой кристаллической решетки между этими зарядами теперь обеднен основными носителями, таким образом, он известен, как обедненная область . Эта область становится непроводящим материалом из собственного полупроводника. По сути, мы имеем почти изолятор, разделяющий проводящие легированные области P и N типов.

(a) Блоки полупроводников P и N типов при контакте не обладают пригодными для использования свойствами.
(b) Монокристалл, легированный примесями P и N типа, создает потенциальный барьер.

Такое разделение зарядов в P-N-переходе представляет собой потенциальный барьер. Этот потенциальный барьер может быть преодолен под воздействием внешнего источника напряжения, заставляющего переход проводить электрический ток. Формирование перехода и потенциального барьера происходит во время производственного процесса. Величина потенциального барьера зависит от материалов, используемых при производстве. Кремниевые P-N-переходы обладают более высоким потенциальным барьером, по сравнению с германиевыми переходами.

На рисунке ниже (a) батарея подключена так, что отрицательный вывод источника поставляет электроны к материалу N-типа. Эти электроны диффундируют к переходу. Положительный вывод источника удаляет электроны из полупроводника P-типа, создавая дырки, которые диффундируют к переходу. Если напряжение батареи достаточно велико для преодоления потенциала перехода (0,6В для кремния), электроны из области N-типа и дырки из области P-типа объединяются, уничтожая друг друга. Это освобождает пространство внутри решетки для перемещения в сторону перехода большего числа носителей заряда. Таким образом, токи основных зарядов областей N-типа и P-типа протекают в сторону перехода. Рекомбинация в переходе позволяет току батареи протекать через P-N переход диода. Такое включение называется прямым смещением .


(a) Прямое смещение отталкивает носителей зарядов к переходу, где рекомбинация отражается на токе батареи.
(b) Обратное смещение притягивает носителей зарядов к выводам батареи, подальше от перехода. Толщина обедненной области увеличивается. Устойчивый ток через батарею не протекает.

Если полярность батареи изменена на противоположную, как показано выше на рисунке (b), основные носители зарядов притягиваются от перехода к клеммам батареи. Положительный вывод батареи оттягивает от перехода основных носителей заряда в области N-типа, электронов. Отрицательный вывод оттягивает от перехода основных носителей в области P-типа, дырок. Это увеличивает толщину непроводящей обедненной области. В ней отсутствует рекомбинация основных носителей; и таким образом, отсутствует и проводимость. Такое подключение батареи называется обратным смещением .

Условное обозначение диода, показанное ниже на рисунке (b), соответствует пластине легированного полупроводника на рисунке (a). Диод представляет собой однонаправленное устройство. Электронный ток протекает только в одном направлении, против стрелки, соответствующем прямому смещению. Катод, полоса на условном обозначении диода, соответствует полупроводнику N-типа. Анод, стрелка, соответствует полупроводнику P-типа.

Примечание: в оригинале статьи предлагается алгоритм запоминания расположения типов полупроводника в диоде. Неуказывающая (N ot-pointing) часть условного обозначения (полоса) соответствует полупроводнику N -типа. Указывающая (P ointing) часть условного обозначения (стрелка) соответствует P -типу.


(a) Прямое смещение PN-перехода
(b) Соответствующее условное графическое обозначение диода
(c) График зависимости тока от напряжения кремниевого диода

Если к диоду приложено прямое смещение (как показано на рисунке (a) выше), при увеличении напряжения от 0 В ток будет медленно возрастать. В случае с кремниевым диодом протекающий ток можно будет измерить, когда напряжение приблизится к 0,6 В (рисунок (c) выше). При увеличении напряжения выше 0,6 В ток после изгиба на графике начнет резко возрастать. Увеличение напряжения выше 0,7 В может привести к току, достаточно большому, чтобы вывести диод из строя. Прямое напряжение U пр является одной из характеристик полупроводников: 0,6-0,7 В для кремния, 0,2 В для германия, несколько вольт для светоизлучающих диодов. Прямой ток может находиться в диапазоне от нескольких мА для точечных диодов до 100 мА для слаботочных диодов и до десятков и тысяч ампер для силовых диодов.

Если диод смещен в обратном направлении, то протекает только ток утечки собственного полупроводника. Это изображено на графике слева от начала координат (рисунок (c) выше). Для кремниевых диодов этот ток в самых экстремальных условиях будет составлять примерно 1 мкА. Это ток при росте напряжения обратного смещения увеличивается незаметно, пока диод не будет пробит. При пробое ток увеличивается настолько сильно, что диод выходит из строя, если последовательно не включено сопротивление, ограничивающее этот ток. Обычно мы выбираем диод с обратным напряжением, превышающим напряжения, которые могут быть приложены при работе схемы, чтобы предотвратить пробой диода. Как правило, кремниевые диоды доступны с напряжениями пробоя 50, 100, 200, 400, 800 вольт и выше. Также возможно производство диодов с меньшим напряжением пробоя (несколько вольт) для использования в качестве эталонов напряжения.

Ранее мы упоминали, что обратный ток утечки до микроампера в кремниевых диодах обусловлен проводимостью собственного полупроводника. Эта утечка может быть объяснена теорией. Тепловая энергия создает несколько пар электрон-дырка, которые проводят ток утечки до рекомбинации. В реальной практике этот предсказуемый ток является лишь частью тока утечки. Большая часть тока утечки обусловлена поверхностной проводимостью, связанной с отсутствием чистоты поверхности полупроводника. Обе составляющие тока утечки увеличиваются с ростом температуры, приближаясь к микроамперу для небольших кремниевых диодов.

Для германия ток утечки на несколько порядков выше. Так как германиевые полупроводники сегодня редко используются на практике, то это не является большой проблемой.

Подведем итоги

P-N переходы изготавливаются из монокристаллического куска полупроводника с областями P и N типа в непосредственной близости от перехода.

Перенос электронов через переход со стороны N-типа к дыркам на сторону P-типа с последующим взаимным уничтожением создает падение напряжения на переходе, составляющее от 0,6 до 0,7 вольта для кремния и зависящее от полупроводника.

Прямое смещение P-N перехода при превышении значения прямого напряжения приводит к протеканию тока через переход. Прикладываемая внешняя разность потенциалов заставляет основных носителей заряда двигаться в сторону перехода, где происходит рекомбинация, позволяющая протекать электрическому току.

Обратное смещение P-N перехода почти не создает ток. Прикладываемое обратное смещение оттягивает основных носителей заряда от перехода. Это увеличивает толщину непроводящей обедненной области.

Через P-N переход, к которому приложено обратное смещение, протекает обратный ток утечки, зависящий от температуры. В небольших кремниевых диодах он не превышает микроампер.

2.1. Электронно-дырочный переход при отсутствии
внешнего напряжения

Электронно-дырочный переход , или сокращенно p-n-переход, – это тонкий переходный слой в полупроводниковом материале на границе между двумя областями с различными типами электропроводности (одна – n-типа, другая – р-типа). Электронно-дырочный переход благодаря своим особым свойствам является основным элементом многих полупроводниковых приборов и интегральных микросхем.

Наряду с p-n-переходами в полупроводниковой технике используются и другие виды электрических переходов, например металл-полупроводник, а также переходы между двумя областями полупроводника одного типа, отличающимися концентрацией примесей, а значит, и значениями удельной проводимости: электронно-электронный (n-n + - переход) и дырочно-дырочный (р-р + - переход). Знак «плюс» относится к слою с большей концентрацией основных носителей заряда.

Электронно-дырочный переход получают в едином кристалле полупроводника, вводя в одну область донорную примесь, а в другую – акцепторную. Атомы примесей при комнатной температуре оказываются полностью ионизированными. При этом атомы акцепторов, присоединив к себе электроны, создают дырки (получается p-область), а атомы доноров отдают электроны, становящиеся свободными (создается n-область) (рис. 2.1, а).

p-n-переход
а)
г)
в)
б)

Для простоты примем концентрации основных носителей заряда в обеих областях одинаковыми:

где p p концентрация дырок в р-области; n n концентрация электронов в n-области. Такой p-n-переход называют симметричным

В каждой области кроме основных носителей заряда имеются неосновные носители, концентрация, которых значительно меньше, чем основных:

p n << n n и n p << p p ,

где p n концентрация дырок в n-области;n p концентрация электронов в р-области.

Из распределения концентраций основных и неосновных носителей заряда в двухслойной структуре (рис. 2.1, 6) видно, что на границе двух областей возникает разность концентраций одноименных носителей заряда. Одни и те же носители заряда в одной области являются основными, а в другой – неосновными, так что дырок в р-области гораздо больше, чем в n-области, и наоборот, электронов в n-области значительно больше, чем в р-области.

Разность концентраций приводит к диффузии основных носителей заряда через границу между двумя областями. Дырки диффундируют из р-области в n-область, а электроны – из n-области в р-область. Попадая в n-область, дырки рекомбинируют с электронами, и по мере продвижения дырок вглубь их концентрация уменьшается. Аналогично электроны, углубляясь в р-область, постепенно рекомбинируют там с дырками, и концентрация электронов уменьшается.

Диффузия основных носителей заряда через границу раздела p-и n-областей создает ток диффузии в p-n-переходе, равный сумме электронного и дырочного токов:

I диф = I p диф + I n диф.

Направление диффузионного тока совпадает с направлением диффузии дырок.

Уход основных носителей заряда из слоев вблизи границы в соседнюю область оставляет в этих слоях нескомпенсированный неподвижный объемный заряд ионизированных атомов примеси:

· уход электронов – положительный заряд ионов доноров в n-области;

· уход дырок – отрицательный заряд ионов акцепторов в р-области (рис. 2.1, а, в).

Эти неподвижные заряды увеличиваются еще и за счет рекомбинации основных носителей заряда с пришедшими из соседней области носителями заряда противоположного знака.

В результате образования по обе стороны границы между р-и n-областями неподвижных зарядов противоположных знаков в p-n-переходе создается внутреннее электрическое поле, направленное от n-области к р-области. Это поле препятствует дальнейшей диффузии основных носителей заряда через границу, являясь для них так называемым потенциальнымбарьером. Его действие определяется высотой потенциального барьера (j), измеряемой в электрон-вольтах (рис. 2.1, г). В результате появления потенциального барьера диффузионный ток уменьшается. Преодоление потенциального барьера возможно только для основных носителей, обладающих достаточно большой энергией.

Слой, образованный участками по обе стороны границы, где «выступили» неподвижные заряды противоположных знаков, является переходным слоем и представляет собой собственно p-n-переход. Из него уходят подвижные носители заряда, называют обедненным слоем или областью пространственного заряда (ОПЗ). Он обладает большим удельным сопротивлением.

Потенциальный барьер, уменьшая диффузию основных носителей заряда, в то же время способствует переходу через границу неосновных носителей. Совершая тепловое хаотическое движение, неосновные носители заряда попадают в зону действия электрического поля и переносятся им через p-n-переход. Движение неосновных носителей заряда под действием внутреннего электрического поля создает в p-n-переходе дрейфовый ток, равный сумме электронной и дырочной составляющих:

I др = I рдр + I n др.

Ток, созданный неосновными носителями заряда, очень мал, так как их количество невелико. Этот ток носит название теплового тока (I т), поскольку количество неосновных носителей заряда зависит от собственной электропроводности полупроводника, т.е. от разрушения ковалентных связей под действием тепловой энергии. Направление дрейфового тока противоположно диффузионному.

При отсутствии внешнего напряжения устанавливается динамическое равновесие, при котором уменьшающийся диффузионный ток становится равным дрейфовому:

I диф = I др,

т.е. ток через p-n-переход равен нулю. Это соответствует определенной высоте потенциального барьера j 0 .

Установившаяся высота потенциального барьера (j 0) в электрон-вольтах численно равна контактной разности потенциалов (U к) в вольтах, создаваемой между нескомпенсированными неподвижными зарядами противоположных знаков по обе стороны границы:

j 0 = U к .

Величина j 0 зависит от температуры и материала полупроводника, а также от концентрации примеси. С повышением температуры высота потенциального барьера уменьшается, с увеличением концентрации примеси и ширины запрещенной зоны потенциальный барьер возрастает.

В состоянии равновесия p-n переход характеризуется также шириной (l 0).

Рассмотренный симметричный p-n-переход имеет одинаковую ширину частей запирающего слоя по обе стороны границы раздела. На практике чаще встречаются структуры с неодинаковой концентрацией донорной и акцепторной примесей. В этом случае p-n-переход называют несимметричным.

В несимметричном p-n-переходе концентрация примеси в одной из областей на два-три порядка больше, чем в другой. В области с малой концентрацией примеси ширина части запирающего слоя соответственно на два-три, порядка больше, чем в области с высокой концентрацией примеси.

2.2. Электронно-дырочный переход
при прямом напряжении

При подаче на p-n-переход внешнего напряжения процессы зависят от его полярности. Внешнее напряжение, подключенное плюсом к р-области (рис. 2.2, а), а минусом к n-области, называют прямым напряжением(U пр). Напряжение U пр почти полностью падает на p-n-переходе, так как его сопротивление во много раз превышает сопротивление р- и n-областей.

Полярность внешнего напряжения (U n р)противоположна полярности контактной разности потенциалов (U к), поэтому электрическое поле, созданное на p-n-переходе внешним напряжением направлено навстречу внутреннему электрическому полю. В результате этого потенциальный барьер понижается и становится численно равным разности между напряжениями, действующими на p-n-переходе (рис. 2.2, б):

j = U к – U n р.

Вследствие разности концентраций дырок в р- и n-областях, а электронов в n- и p-областях основные носители заряда диффундируют через p-n-переход, чему способствует снижение потенциального барьера. Через p-n-переход начинает проходить диффузионный ток. Одновременно с этим основные носители заряда в обеих областях движутся к p-n-переходу, обогащая его подвижными носителями и уменьшая, таким образом, ширину (l)обедненного слоя. Это приводит к снижению сопротивления p-n-перехода и возрастанию диффузионного тока. Однако пока U n р < U к , еще существует потенциальный барьер. Обедненный носителями заряда слой p-n-перехода имеет большое сопротивление, ток в цепи имеет малую величину.

При увеличении внешнего прямого напряжения до U к = U n р потенциальный барьер исчезает, ширина обедненного слоя стремится к нулю. Дальнейшее увеличение внешнего напряжения при отсутствии слоя p-n-перехода, обедненного носителями заряда, приводит к свободной диффузии основных носителей заряда из своей области в область с противоположным типом электропроводности. В результате этого через p-n-переход по цепи потечет сравнительно большой ток, называемый прямым током (I пр), который с увеличением прямого напряжения растет.

а)
б)

Введение носителей заряда через электронно-дырочный переход из области, где они являются основными, в область, где они являются неосновными, за счет снижения потенциального барьера называют инжекцией . В симметричном p-n-переходе инжекции дырок из р-области в n-область и электронов из n-области в р-область по интенсивности одинаковы.

Инжектированные в n-область дырки и в р-область электроны имеют вблизи границы большую концентрацию, уменьшающуюся по мере удаления от границы в глубь соответствующей области из-за рекомбинаций. Большое количество неосновных носителей заряда у границы компенсируется основными носителями заряда, которые поступают из глубины области; например, инжектированные в n-область дырки компенсируются электронами. В результате этой компенсации объемных зарядов, создаваемых у p-n перехода инжектированными неосновными носителями, полупроводник становится электрически нейтральным.

Движение основных носителей заряда через p-n-переход создает электрический ток во внешней цепи. Уход электронов из n-области к p-n-переходу и далее в р-область и исчезновение их в результате рекомбинации восполняется электронами, которые поступают из внешней цепи от минуса источника питания. Соответственно, убыль дырок в р-области, ушедших к p-n-переходу и исчезнувших при рекомбинации, пополняется за счет ухода электронов из ковалентных связей во внешнюю цепь к плюсу источника питания.

Неосновные носители заряда, оказавшиеся в результате инжекции в области с противоположным типом электропроводности, например дырки, инжектированные из р-области в n-область, продолжают движение от границы вглубь. Это движение происходит по причине как диффузии, так и дрейфа, поскольку имеется и градиент их концентрации, и электрическое поле в полупроводнике, созданное внешним напряжением. Диффузия преобладает вблизи p-n-перехода, а дрейф – вдали от него, внутри соответствующей области. На определенном расстоянии от p-n-перехода концентрация инжектированных неосновных носителей заряда убывает до нуля вследствие рекомбинации. В итоге концентрация неосновных носителей остается такой, какой была в равновесном состоянии при отсутствии внешнего напряжения, т.е. обусловленной собственной электропроводностью полупроводника. Дрейф неосновных носителей заряда в сторону от p-n-перехода внутрь области создает тепловой ток (I т). Тепловой ток на несколько порядков меньше диффузионного тока основных носителей заряда, т.е. прямого тока (I пр), и имеет противоположное ему направление.

Прямой ток создается встречным движением дырок и электронов через p-n-переход, но направление его соответствует направлению движения положительных носителей заряда – дырок. Во внешней цепи прямой ток протекает от плюса источника прямого напряжения через полупроводниковый кристалл к минусу источника.

Мы рассмотрели процессы в симметричном p-n-переходе. В используемых на практике несимметричных p-n-переходах, имеющих неодинаковые концентрации акцепторов и доноров, инжекция носит односторонний характер. Например, если концентрация дырок в p-области на несколько порядков превышает концентрацию электронов в n-области (p p >> n n), то диффузия дырок в n-область будет несоизмеримо больше диффузии электронов в р-область. В этом случае можно говорить об односторонней инжекции дырок в n-область, а диффузионный ток через p-n-переход считать дырочным, пренебрегая его электронной составляющей. Таким образом, в несимметричном p-n-переходе носители заряда инжектируются из низкоомной области в высокоомную, для которой они являются неосновными.

При несимметричном p-n-переходе область полупроводника с малым удельным сопротивлением (большой концентрацией примеси), из которой происходит инжекция, называют эмиттером , а область, в которую инжектируются неосновные для нее носители заряда, – базой .

p-n -перехо́д (n - negative - отрицательный, электронный, p - positive - положительный, дырочный), или электронно-дырочный переход - разновидность гомопереходов , Зоной p-n перехода называется область полупроводника , в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p .

Электронно-дырочный переход может быть создан различными путями:

  1. в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n -область), а в другой - акцепторной (p -область);
  2. на границе двух различных полупроводников с разными типами проводимости.

Если p-n -переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n - к р -области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.

Энергетическая диаграмма p-n -перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении

При контакте двух областей n - и p - типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p -области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n -области - нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле , направленное от n -области к p -области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт - устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n - и p -областями при этом существует разность потенциалов , называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p -области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p -области, то потенциальный барьер понижается (прямое смещение), а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p - n -переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p - и n -областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p -области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p-n -переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p-n -переход течёт ток I s (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p-n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 10 5 - 10 6 раз. Благодаря этому p-n -переход может использоваться для выпрямления переменных токов (диод).

Вольт-амперная характеристика

Чтобы вывести зависимость величины тока через p-n -переход от внешнего смещающего напряжения V , мы должны рассмотреть отдельно электронные и дырочные токи . В дальнейшем будем обозначать символом J плотность потока частиц, а символом j - плотность электрического тока ; тогда j e = −eJ e , j h = eJ h .

Вольт-амперная характеристика p-n -перехода. I s - ток насыщения, U пр - напряжение пробоя.

При V = 0 как J e , так и J h обращаются в нуль. Это означает, конечно, не отсутствие движения отдельных носителей через переход, а только то, что в обоих направлениях движутся равные количества электронов (или дырок). При V ≠ 0 баланс нарушается. Рассмотрим, например, дырочный ток через обеднённый слой. Он включает следующие две компоненты:

  1. Ток генерации n -области в p -область перехода. Как видно из названия, этот ток обусловлен дырками, генерируемыми непосредственно в n -области обеднённого слоя при тепловом возбуждении электронов с уровней валентной зоны. Хотя концентрация таких дырок (неосновных носителей) в n -области чрезвычайно мала по сравнению с концентрацией электронов (основных носителей), они играют важную роль в переносе тока через переход. Это происходит потому, что каждая дырка, попадающая в обеднённый слой, тут же перебрасывается в p -область под действием сильного электрического поля, которое имеется внутри слоя. В результате величина возникающего тока генерации не зависит от значения изменения потенциала в обеднённом слое, поскольку любая дырка, оказавшаяся в слое, перебрасывается из n -области в p -область.
  2. Ток рекомбинации , то есть дырочный ток, текущий из p -области в n -область. Электрическое поле в обеднённом слое препятствует этому току, и только те дырки, которые попадают на границу обеднённого слоя, имея достаточную кинетическую энергию , чтобы преодолеть потенциальный барьер, вносят вклад в ток рекомбинации. Число таких дырок пропорционально e −eΔФ/kT и, следовательно,

В отличие от тока генерации, ток рекомбинации чрезвычайно чувствителен к величине приложенного напряжения V . Мы можем сравнить величины этих двух токов, заметив, что при V = 0 суммарный ток через переход отсутствует: J h rec (V = 0) = J h gen Из этого следует, что J h rec = J h gen e eV/kT . Полный дырочный ток, текущий из p -области в n -область, представляет собой разность между токами рекомбинации и генерации:

J h = J h rec − J h gen = J h gen (e eV/kT − 1).

Аналогичное рассмотрение применимо к компонентам электронного тока с тем только изменением, что токи генерации и рекомбинации электронов направлены противоположно соответствующим дырочным токам. Поскольку электроны имеют противоположный заряд, электрические токи генерации и рекомбинации электронов совпадают по направлению с электрическими токами генерации и рекомбинации дырок. Поэтому полная плотность электрического тока есть j = e (J h gen + J e gen )(e eV/kT − 1).

Ёмкость p-n -перехода и частотные характеристики

p-n -переход можно рассматривать как плоский конденсатор , обкладками которого служат области n - и p -типа вне перехода, а изолятором является область объемного заряда, обеднённая носителями заряда и имеющая большое сопротивление. Такая ёмкость называется барьерной . Она зависит от внешнего приложенного напряжения, поскольку внешнее напряжение меняет пространственный заряд. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между n - и p -областями полупроводника, и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды неподвижны и связаны с ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением электрической ёмкости перехода. В зависимости от площади перехода, концентрации легирующей примеси и обратного напряжения барьерная емкость может принимать значения от единиц до сотен пикофарад . Барьерная ёмкость проявляется при обратном напряжении; при прямом напряжении она шунтируется малым сопротивлением p-n -перехода. За счёт барьерной ёмкости работают варикапы .

Кроме барьерной ёмкости p-n -переход обладает так называемой диффузионной ёмкостью . Диффузионная ёмкость связана с процессами накопления и рассасывания неравновесного заряда в базе и характеризует инерционность движения неравновесных зарядов в области базы. Диффузионная ёмкость обусловлена тем, что увеличение напряжения на p-n -переходе приводит к увеличению концентрации основных и неосновных носителей, то есть к изменению заряда. Величина диффузионной ёмкости пропорциональна току через p-n -переход. При подаче прямого смещения значение диффузионной ёмкости может достигать десятков тысяч пикофарад.

Эквивалентная схема p-n -перехода. C б - барьерная ёмкость, C д - диффузионная ёмкость, R a - дифференциальное сопротивление p-n -перехода, r - объёмное сопротивление базы.

Суммарная ёмкость p-n -перехода определяется суммой барьерной и диффузионной ёмкостей. Эквивалентная схема p-n -перехода на переменном токе представлена на рисунке. На эквивалентной схеме параллельно дифференциальному сопротивлению p-n -перехода R а включены диффузионная ёмкость C д и барьерная ёмкость С б; последовательно с ними включено объёмное сопротивление базы r . С ростом частоты переменного напряжения, поданного на p-n -переход, емкостные свойства проявляются все сильнее, R а шунтируется ёмкостным сопротивлением, и общее сопротивление p-n -перехода определяется объёмным сопротивлением базы. Таким образом, на высоких частотах p-n -переход теряет свои линейные свойства.

Пробой p-n -перехода

Пробой диода - это явление резкого увеличения обратного тока через диод при достижении обратным напряжением некоторого критического для данного диода значения. В зависимости от физических явлений, приводящих к пробою, различают лавинный, туннельный, поверхностный и тепловой пробои.

  • Лавинный пробой (ударная ионизация) является наиболее важным механизмом пробоя p-n -перехода. Напряжение лавинного пробоя определяет верхний предел обратного напряжения большинства диодов. Пробой связан с образованием лавины носителей заряда под действием сильного электрического поля, при котором носители приобретают энергии, достаточные для образования новых электронно-дырочных пар в результате ударной ионизации атомов полупроводника.
  • Туннельным пробоем электронно-дырочного перехода называют электрический пробой перехода, вызванный квантовомеханическим туннелированием носителей заряда сквозь запрещённую зону полупроводника без изменения их энергии. Туннелирование электронов возможно при условии, если ширина потенциального барьера, который необходимо преодолеть электронам, достаточно мала. При одной и той же ширине запрещённой зоны (для одного и того же материала) ширина потенциального барьера определяется напряжённостью электрического поля, то есть наклоном энергетических уровней и зон. Следовательно, условия для туннелирования возникают только при определённой напряжённости электрического поля или при определённом напряжении на электронно-дырочном переходе - при пробивном напряжении. Значение этой критической напряжённости электрического поля составляет примерно 8∙10 5 В/см для кремниевых переходов и 3∙10 5 В/см - для германиевых. Так как вероятность туннелирования очень сильно зависит от напряжённости электрического поля, то внешне туннельный эффект проявляется как пробой диода.
  • Поверхностный пробой (ток утечки) . Реальные p-n -переходы имеют участки, выходящие на поверхность полупроводника. Вследствие возможного загрязнения и наличия поверхостных зарядов между p- и n- областями могут образовываться проводящие плёнки и проводящие каналы, по которым идёт ток утечки I ут. Этот ток увеличивается с ростом обратного напряжения и может превысить тепловой ток I 0 и ток генерации I ген. Ток I ут слабо зависит от температуры. Для уменьшения I ут применяют защитные плёночные покрытия.
  • Тепловой пробой - это пробой, развитие которого обусловлено выделением в выпрямляющем электрическом переходе тепла вследствие прохождения тока через переход. При подаче обратного напряжения практически всё оно падает на p-n -переходе, через который идёт, хотя и небольшой, обратный ток. Выделяющаяся мощность вызывает разогрев p-n -перехода и прилегающих к нему областей полупроводника. При недостаточном теплоотводе эта мощность вызывает дальнейшее увеличение тока, что приводит к пробою. Тепловой пробой, в отличие от предыдущих, необратим.

Применение


Wikimedia Foundation . 2010 .

Смотреть что такое "P - n-переход" в других словарях:

    Переход процесс перемещения из одного положения либо состояния к другому; а также место, пригодное или предназначенное для такого перемещения: Содержание 1 В строительстве 2 Перемещение 3 В физике … Википедия

    Один из осн. законов материалистич. диалектики, согласно которому изменение качества объекта происходит тогда, когда накопление количеств. изменений достигает определ. предела. Этот закон вскрывает наиболее общий механизм развития.… … Философская энциклопедия

    Перехода, м. 1. только ед. Действие по глаг. перейти–переходить (1). Переход из Москвы в Коломну длился несколько часов. Переход полководца Суворова через Альпы. Переход через реку. Переход к очередным делам. Переход на хозрасчет. Переход на… … Толковый словарь Ушакова

    Переход на "зимнее" время - на территории РФ осуществляется в последнее воскресенье октября в 3:00 по местному времени путем перевода стрелки часов на один час назад. Впервые перевод стрелок часов на час вперед летом и на час назад зимой в целях экономии энергетических… … Энциклопедия ньюсмейкеров

    Переход на "зимнее" и "летнее" время - Россия спустя 30 лет после введения перехода на зимнее / летнее время отказывается от этой практики с осени 2011 года россияне не будут переводить стрелки часов на час назад, сообщил во вторник президент РФ Дмитрий Медведев. Переход на зимнее… … Энциклопедия ньюсмейкеров

    Переход на "зимнее" время: экономическое "за" и медицинское "против" - 28 октября в 3 часа (по местному времени) в России произойдет переход на зимнее время. Перевод стрелок часов на час вперед летом и на час назад зимой в целях экономии энергетических ресурсов впервые был проведен в Великобритании в 1908 году. Идея … Энциклопедия ньюсмейкеров

    Переход на "зимнее"/"летнее" время - Впервые перевод стрелок часов на час вперед летом и на час назад зимой в целях экономии энергетических ресурсов был проведен в Великобритании в 1908 году. Сама же идея экономии энергетических ресурсов путем перевода стрелок принадлежит… … Энциклопедия ньюсмейкеров

    Фазовыйпереход, сопровождающийся изменением величины и характера электропроводностипри изменении темп ры Т, давления р, магн. поля Н илисостава вещества. П. м. д. наблюдаются в ряде твёрдых тел, иногда в жидкостяхи газах (плотных парах металлов) … Физическая энциклопедия

    - (правило «руки», закон Педерсена) фонетическое изменение, произошедшее в раннем праславянском языке. Содержание 1 Описание явления 1.1 … Википедия

    Переход армии Александра Суворова через швейцарские Альпы - Швейцарский поход армии Александра Васильевича Суворова - переход русских войск под командованием генерал фельдмаршала Суворова из Северной Италии через Альпы в Швейцарию, длился с 10 по 27 сентября 1799 года. Был совершен во время войны 2… … Энциклопедия ньюсмейкеров

    ПЕРЕХОД - (1) в программировании команда исполнителю продолжать исполнение алгоритма (программы) с указанного этой командой листа. Различают: а) П. безусловный операция, передающая управление по заранее определённому адресу, который указывается в самой… … Большая политехническая энциклопедия

Loading...Loading...